Royaume du Maroc

المملكة المغربية

Ministère de l'Energie, des Mines, de l'Eau et de l'Environnement Département de l'Energie et des Mines وزارة الطاقة والمعادن والماء والبيئة قطاع الطاقة والمعادن

Direction de l'Observation et de la Programmation

ETUDE PROSPECTIVE DE LA DEMANDE D'ENERGIE A L'HORIZON 2030

Janvier 2013

SOMMAIRE

INTRODUCTION	2
RESUME DE L'ETUDE	7
DEROULEMENT DE L'ETUDE	11
CONTEXTE DE BASE DE L'ETUDE	11
HYPOTHESES DE BASE DE L'ETUDE	13
SCENARIOS SOCIO ECONOMIQUES ET D'EFFICACITE ENERGETIQUE	17
RESULTATS ET INTERPRETATIONS	24
CONCLUSIONS ET RECOMMANDATIONS	34
ANNEXES	37
BIBLIOGRAPHIE	51
RESULTATS GENERAUX	52

INTRODUCTION

« Gouverner c'est prévoir ! »

Le véritable vœu de tout pays en développement en général, et de tout pays émergent en particulier, reste et demeure son développement économique et social. Une telle assertion reste prouvée tant que la population d'un tel pays ne cesse d'aspirer à une amélioration de ses conditions de vie ainsi qu'à un développement social lui permettant d'être plus efficace et plus productive au fil du temps, et donc d'être capable de renouveler ses capacités créatives lui permettant, dans une large mesure, de profiter d'un niveau de vie de plus en plus décent et meilleur.

Ledit développement se trouve subordonné, en premier lieu, à des investissements efficients et réguliers portant à la fois sur les infrastructures de base, la stabilité politico-économique et sociale, la situation géographique stratégique et les investissements intellectuels. Dans ce sens, l'attractivité de notre pays en matière d'investissements étrangers n'est plus à démontrer. Néanmoins, le développement de nos investissements intellectuels en vue d'accompagner et de mieux rentabiliser de tels investissements reste à renforcer. A ce propos, nous pouvons admettre l'équivalence entre la croissance économique, la créativité et les investissements intellectuels en posant:

Croissance = Créativité = Investissements intellectuels

Sans trop s'attarder sur les effets bénéfiques de la croissance économique sur le développement de l'esprit créatif de notre population, ainsi que, vice-versa, les impacts fructueux d'un tel esprit sur l'évolution et le maintien de la croissance en question, restons malgré tout attentifs quant aux conséquences de par le monde de ladite croissance sur la création de nouveaux emplois. Un tel objectif incorpore tous les efforts fournis par toute nation dans le but d'échapper à la pauvreté, à la précarité et à l'exclusion. A ce propos, le cas de la Chine et de l'Inde est d'un apport déterminant.

Le développement de notre système énergétique, artère commune à tous les secteurs économiques en place, devient, à priori, la clé garantie de notre développement économique et social. Un tel développement devant être assuré après un diagnostic préalable de tous les déterminants énergétiques de l'économie ainsi envisagée.

En tout état de cause, la présente étude, intitulée analyse prospective de la demande énergétique à l'horizon 2030, et reposant sur la définition et la construction de scénarii de développement socio-économique et de stratégie énergétique, s'acharne à dégager une plate-forme énergétique de base servant à entrevoir l'adéquation entre l'offre et la demande d'énergie dans notre pays au même horizon. L'exploitation d'une telle adéquation nous amènera, à son tour, à induire un plan énergétique national stratégique soucieux de mieux maîtriser l'avenir de notre politique énergétique. Enumérons tout simplement que la mise au point permanente d'une telle politique ne peut avoir lieu sans la maîtrise des diverses articulations de notre système énergétique dont les conséquences portent essentiellement sur l'approvisionnement en énergie de notre pays dans les meilleures conditions de sécurité et de coût.

Nous ne prétendons pas être en mesure de déduire une demande énergétique prévisionnelle à l'horizon 2030 d'une manière purement rationnelle. Nous laissons libre cours, en quelque sorte, à notre intuition de s'exprimer sincèrement en vue de rejeter tout ce qui nous semble irréalisable et inadmissible dans l'avenir.

Sans élucider l'ensemble des axes de notre politique énergétique en vigueur, qui se traduit par l'ensemble des actions destinées à assurer l'approvisionnement énergétique du pays dans son ensemble et, à l'intérieur du pays, celui des différentes catégories de consommation, contentons-nous, à l'instar de tout pays quel qu'il soit, d'insister sur le caractère urgent et stratégique de la réduction de notre dépendance énergétique vis-à-vis de l'extérieur, telle dépendance ayant déjà atteint son summum. Le déficit énergétique en question peut s'écrire :

Déficit énergétique = Demande énergétique locale - Offre locale d'énergie

En logique mathématique, réduire un tel déficit, différence entre deux termes, revient à la fois à minimiser la demande énergétique locale et à maximiser l'offre locale d'énergie.

D'un côté, maximiser l'offre locale d'énergie revient tout naturellement à exploiter au maximum nos ressources énergétiques locales telles que les énergies renouvelables, les schistes bitumineux et à intensifier la recherche pétrolière dans l'espoir d'alléger les effets aussi néfastes de notre lourde facture énergétique vis-à-vis de notre économie. Le développement de l'efficacité de notre secteur énergétique n'est cependant pas à omettre.

De l'autre côté, minimiser la demande énergétique locale ne signifie en aucun cas s'abstenir de consommer. Si c'était le cas, tout développement économique et social serait catégoriquement quasi impossible. Cela tient à dire par contre qu'il faut continuer à consommer sans toutefois gaspiller. En d'autres termes, nous sommes enclins à mieux gérer notre demande énergétique même si celle-ci s'apparente déjà assez faible relativement à des économies similaires à la notre. Il va ainsi de soi qu'avant de la gérer, la demande énergétique doit être préalablement évaluée. Par voie de conséquence, l'analyse prospective de la demande énergétique à long terme se voit préalablement justifiée.

Evoquons, à cet égard, qu'une pure extrapolation du passé ne peut nous venir en aide dans ce type de projections. La raison en est que les besoins en énergie de nos populations ne cessent de subir des modifications permanentes au fur et à mesure que les mentalités en place soient imprégnées à leur tour d'évolutions en nettes progressions. A ce titre, la précédente étude initiée au sein de la Direction de l'Observation et de la Programmation et portant sur la prévision de la demande en énergie primaire à l'horizon 2012 ne peut excéder cet horizon. En revanche, nous retenons comme acquis l'analyse rétrospective, cette fois-ci, adoptée par ladite étude.

Rappelons toutefois que même si nous assistons à une volonté de changement et d'enrichissement, par le biais des échanges culturels, de tout mode de vie à travers le monde, un tel changement ne peut avoir lieu sans que le passé soit bien maîtrisé. A titre d'image, le conducteur d'une automobile se concentre sur ce qui se défile en face de lui à travers son pare-brise sans oublier de jeter son coup d'œil de temps en temps, cette fois-ci à travers son rétroviseur, afin de mieux juger de ce qui a lieu d'être derrière lui. Ce n'est qu'ainsi qu'un tel conducteur puisse maîtriser l'état de sa propre conduite et mieux se positionner

par rapport aux autres usagers de la route. En quelque sorte, notre automobiliste parcourt son passé pour bien explorer son avenir!

En somme, et comme l'avancent les économètres, notre futur dépend toujours de notre passé. Et même si le futur escompté dépend du présent, le présent lui-même dépend du passé. Seulement, il ne s'agit pas de rester fataliste à ce point, particulièrement en matière de prévisions énergétiques à long terme, sachant inéluctablement qu'une différence importante et de taille se canalise entre la notion du futur et celle du devenir : **le futur on le subit alors que le devenir on le choisit**. La présence d'une telle marge de manœuvre qui en découle permet tout de même au planificateur à la fois de mieux engager ses investissements et de mieux prévoir le comportement prochain du système énergétique à rénover et à mettre en place.

Les enjeux de ladite planification sont de taille. En effet, flambée des prix actuels de l'énergie oblige, force est d'admettre que le souci permanent de l'entité planificatrice se manifeste au niveau de l'optimisation des investissements à supporter à long terme ainsi qu'à l'échelle de la lourde facture énergétique à régler au fil des ans. Nous assistons à un véritable exercice d'évaluation énergétique venant en aide à l'épanouissement de nos activités énergétiques.

Dans ce cadre, malgré que les méthodes de corrélations économiques aspirant à induire des relations plus ou moins étroites entre la demande énergétique elle-même et les agrégats socio-économiques tels que le produit intérieur brut, la population ainsi que le prix du produit énergétique considéré, nous sommes, dores et déjà, conviés à les abandonner progressivement même si elles présentent un caractère assez aisé quant à la disponibilité des données et à l'aspect relativement moins contraignant des programmes informatisés utilisés à des fins de prévisions.

Nous sommes par contre invités, par la force des choses, à adopter l'approche systémique traitant l'ensemble de notre système économique composé par des secteurs clés tels que les secteurs de l'industrie, de l'agriculture, des transports, du résidentiel et du tertiaire. Notre rôle se limiterait donc, en toute théorie, à traduire en besoins énergétiques les politiques sectorielles ainsi tracées. A titre indicatif, les besoins en énergie des cimenteries devront être de tant si nous voulons développer l'activité du ciment de tant. Nous sommes par conséquent en mesure de traduire, en termes de demande d'énergie sous toutes ses formes, la volonté de nos pouvoirs publics à assurer la croissance économique escomptée.

Faudrait-il rappeler que les pouvoirs publics en place optent pour une croissance économique de rupture, avoisinant les 6% par an, dans le but de remédier à des situations actuelles connues par la présence du chômage, de la pauvreté et de l'exclusion. Réaliser de tels objectifs nous incite à rompre avec les tendances passées en ce qui concerne l'importance de notre produit intérieur brut ainsi qu'à l'orientation des secteurs économiques générant les valeurs ajoutées sectorielles le composant. C'est dire que même si l'évolution annuelle moyenne en volume de ce produit intérieur brut a été de 4% au cours de la période 1961-2000 et de 5% entre 2000 et 2010, cette évolution reste insuffisante malgré qu'elle ait participé massivement au développement économique et social actuel de notre pays.

Au total, et afin de simuler les tendances futures de la politique économique espérée par nos hautes autorités, telles tendances matérialisées fondamentalement par des efforts grandioses de développement de nos infrastructures de base, ainsi que par le stratégique projet de l'Initiative Nationale du Développement Humain, nous commencerons tout d'abord par instaurer un scénario de

croissance démographique, lequel scénario orchestra deux scénarii macroéconomiques « Haut » et « Bas ». Chacun de ces deux scénarii macroéconomiques se trouvera conjugué à deux scénarii énergétiques, l'un appelé « Laisser Faire » consistant à intégrer le progrès technologique en matière d'énergie relativement aux nouveaux équipements consommateurs d'énergie à acquérir au cours de la période de prévisions 2000-2030; l'autre nommé « Maîtrise d'Energie », s'acharnant, en plus des avancées technologiques prises en considération dans le scénario énergétique « Laisser Faire », d'être plus volontariste en matière d'économie d'énergie. Un potentiel d'économie d'énergie se déduira ainsi relativement à chaque scénario économique retenu au cours de la période de prévision 2000-2030.

Le choix du modèle pour mener à bien l'évaluation de telles perspectives énergétiques à l'horizon 2030 a porté sur le modèle MEDEE-Sud, Modèle d'Evaluation de la Demande en Energie dans les Pays du Sud. Un tel modèle étant reconnu particulièrement par son approche systémique technico-économique de type comptable traitant des principaux usages de l'énergie. C'est aussi un système de simulation à long terme de la demande en énergie finale pour un pays à revenu intermédiaire. Sa conception a été assurée par l'IEJE (Institut Economique et Juridique de l'Energie) avec le soutien financier de la CEE (Commission des Communautés Européennes) et de l'Agence Française pour la Maîtrise de l'Energie.

Aussi, nos travaux porteront sur :

- La délimitation des scénarii démographique, économiques et énergétiques ;
- L'élaboration du bilan énergétique relatif à l'année de base 2000 ainsi que celui relatif à l'année 2006, année d'actualisation ;
- L'établissement des comptes énergétiques sectoriels inhérents à l'année de base 2000 ;
- L'élaboration des indicateurs sectoriels ou niveaux d'activité sectoriels relativement à la période de prévisions 2000-2030;
- La simulation, à l'aide du modèle MEDEE-Sud, de l'ensemble des données ainsi recueillies et nécessaires à l'aboutissement d'une telle prospective ; et enfin;
- L'interprétation des résultats ainsi obtenus en vue de dégager des conclusions et des recommandations en matière de planification énergétique à long terme.

Quant au choix de l'année de base, il s'est limité à l'année 2000 à cause d'une disponibilité assez large de données démographiques, économiques et particulièrement énergétiques s'y rapportant et requises par le modèle combien exigeant en données. Il va de soi que plus l'année de base est récente et mieux définie, plus les résultats de simulation à l'aide du modèle MEDEE-Sud sont valides et précis.

En outre, la période 2000-2010 a bien été exploitée dans le but de mieux ajuster les données de base du modèle ainsi que les résultats qui en découlent.

RESUME DE L'ETUDE

Quel que soit le pays considéré, sa politique énergétique doit être fondamentalement axée sur la satisfaction de son approvisionnement en énergie dans les meilleures conditions de sécurité et de cout ; « axiome » à partir duquel découle quasiment l'ensemble des autres axes couvrant ladite politique. En d'autres termes, cela revient à sauvegarder l'adéquation entre l'offre et la demande d'énergie à court, moyen et long termes. Dans le cas présent, nous nous sommes limités à l'analyse des perspectives énergétiques par forme et par usage sectoriel à l'horizon 2030. L'évaluation des impacts de la demande future en énergie sur notre environnement se trouvera déduite.

Les impacts du développement des énergies renouvelables, du renforcement de l'efficacité énergétique viendront réduire notre dépendance énergétique vis-à-vis de l'extérieur (de l'ordre de 96% actuellement) se traduisant par une lourde facture énergétique nette avoisinant 63,7 Milliards de Dirhams en 2010, soit une ponction sur le Produit Intérieur Brut de l'ordre de 8,3%. Il est aussi question de se prononcer sur l'évolution de la structure de notre demande d'énergie à l'horizon escompté.

Pour ce faire, la présente étude vise essentiellement à délimiter le contexte ultime et approprié afin de répondre à ces objectifs.

I-APPROCHE SYSTEMIQUE D'EVALUATION DE LA DEMANDE D'ENERGIE A L'HORIZON 2030 :

Prévoir la demande d'énergie future ne signifie nullement la deviner. Contrairement au prévisionniste qui s'acharne d'arrêter la demande d'énergie à l'horizon escompté, le prospectiviste, quant à lui, tente d'explorer le futur selon quelques scénarios de demande énergétique possibles invitant ainsi le décideur à mieux se positionner au voisinage de l'un d'eux jugé le plus possible et vraisemblable.

Nous tenons, dans le même ordre d'idées, à souligner qu'au lieu d'adopter les méthodes d'extrapolations ou de corrélations économiques à long terme devant respecter les tendances passées, nous avons opté pour l'approche systémique volontariste, portant cette fois-ci, sur l'ensemble des usages énergétiques sectoriels. L'approche ainsi envisagée a été assurée à l'aide du modèle MEDEE-Sud, modèle de prévision de la demande d'énergie finale dans les pays du Sud. Il a donc été question de partir d'une année de base bien définie en données socioéconomiques et énergétiques, d'un scénario démographique, de deux scénarios macroéconomiques et de deux scénarios énergétiques.

II-DEMANDE D'ENERGIE ET BILAN ENERGETIQUE :

Le cœur du travail de prospective énergétique ici présente consiste dans le souci de disposer d'un bilan énergétique par forme d'énergie reflétant le comportement du système énergétique à l'horizon 2030, nous sommes amenés à élaborer le bilan en question selon une composante **Offre d'énergie** sensée décrire les activités inhérentes au secteur de l'énergie dans son ensemble et une autre mettant en relief la **Demande d'énergie finale par usage sectoriel**.

III-SCENARIOS DEMOGRAPHIQUE, MACROECONOMIQUES ET ENERGETIQUES :

1-Scénario démographique :

Ce scénario a été retenu par le CERED (Centre des Etudes et de Recherches Démographiques affilié au Haut-Commissariat au Plan) et s'énonce comme suit :

2000-2006	2006-2012	2012-2020	2020-2025	2025-2030	2006-2030
0,96	1,07	0,96	0,79	0,79	0,92

Population par milieu (En 1000 Habitants)

							2006-
	2000	2006	2012	2020	2025	2030	2030
Taux d'urbanisation (En							
%)	55	56	59	62	62	64	
Milieu Urbain	15 940	17 079	19 185	21 762	22 636	24 303	1,48%
Milieu rural	12 865	13 427	13 332	13 338	13 873	13 671	0,07%
Population totale	28 805	30 506	32 518	35 101	36 509	37 974	0,92%

2-Scénarios macroéconomiques :

A ce stade, nous distinguons un scénario macroéconomique « de référence à caractère tendanciel » basé sur le respect des tendances passées et dont le but reste de commencer par mieux situer le décideur lui permettant ainsi de se positionner au voisinage du scénario de demande énergétique à adopter. Un deuxième scénario macroéconomique « Bas », permettant de simuler les stratégies sectorielles récemment retenues par nos Hautes Autorités Ce scénario étant axé sur la **Stratégie Energétique Nationale arrêtée lors des dernières assises énergétiques tenues à Oujda en date du 31/Mai/2011, en présence de Sa Majesté le Roi Mohammed VI que Dieu l'assiste.** Et enfin un Scénario macroéconomique « Haut » venant majorer les deux précédents et dont le but demeure de prétendre à une « émergence socioéconomique » de notre pays aux environs de 2030.

Nous sommes donc amenés à délimiter la structure sectorielle de notre Produit Intérieur Brut qui est déduite pratiquement induite comme ci-après :

(En %)	1990	2000	2006	2009	2012	2020	2030
Agriculture (Y compris pèche)	17	14	16	16	14	12	11
Industrie	26	23	20	20	23	27	29
ВТР	5	5	6	7	6	5	5
Transports	5	4	3	4	5	6	7
Tertiaire	47	54	55	54	52	50	48
PIB global	100	100	100	100	100	100	100

Croissance économique (En %):

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario macroéconomique de	5	5	4,8	4,6	4,4
« Référence »					
(Croissance modérée)					
Scénario macroéconomique « Bas »	5	5	5,5	5,3	5
(Croissance moyenne)					
Scénario	5	5	6,5	6,3	6
macroéconomique « Haut »					
(Croissance forte)					

D'autres hypothèses, ne pouvant être expliquées ni par la croissance démographique, ni par la croissance économique telles que le taux d'électrification rurale, la « butanisation » du monde rural, la substitution entre formes d'énergie ont été prises en considération.

2-Scénarios énergétiques:

A ces scénarios socioéconomiques nous associons deux scénarios énergétiques définis tel que :

- Un scénario énergétique « Laisser Faire » ne tenant compte que de l'impact du progrès technologique sur notre système économique ; et
- Un scénario « Maitrise d'Energie » qui lui tient compte des actions volontaristes en matière d'efficacité énergétique en plus que le progrès technologique considéré seul.

III-RESULTATS ET INTERPRETATIONS:

S'agissant de la demande d'énergie finale par secteur et par usage, seul le scénario macroéconomique « Bas » a été retenu dans la mesure où il correspond, à quelque chose près, à celui retenu par le plan Maroc vert. Une telle demande doit être traitée avec doigté vu le choix conventionnel de l'équivalence énergétique de l'électricité, soit à la production, soit à la consommation. Par ailleurs, nous dégageons quelques indicateurs énergétiques tels que la consommation d'énergie par habitant, l'intensité énergétique globale et par secteur économique, émissions de Co2 par habitant, globale et par secteur...

CONCLUSIONS ET RECOMMANDATIONS

En vue d'améliorer et de mener à terme les travaux de prévision et de planification énergétiques qui ont porté jusqu'à nos jours spécialement sur l'analyse de la demande d'énergie à moyen et long terme, nous proposons ce qui suit :

1) Au niveau de la demande d'énergie :

L'analyse prospective de la demande d'énergie à l'horizon 2030 venant d'être explicitée ci-dessus est fondée sur les consommations énergétiques sectorielles estimées à partir de l'enquête de 1982 effectuée par l'USAID et de l'enquête sur les ménages de 1987 menée par les soins de la Société nationale des produits pétroliers.

A ce stade, nous préconisons de reprendre les mêmes simulations de demande d'énergie à l'aide du modèle MED-PRO ayant pour particularité relativement au modèle MEDEE-Sud, celle participant aussi à la programmation de l'offre électrique par le biais de la prévision de la courbe de charge électrique, tout en déduisant les impacts d'une telle demande d'énergie sur l'environnement à l'horizon escompté. A cet effet, l'exploitation des résultats des enquêtes de consommations énergétiques sectorielles par usage en cours de réalisation au sein de la Direction de l'Observation et de la Programmation ne peut être que vivement conseillée.

Signalons à ce sujet que plus les consommations énergétiques sectorielles par usage sont fiables, plus les résultats de demande d'énergie conséquents seront performants.

2) Au niveau de l'efficacité énergétique :

Nous rappelons que les résultats inhérents à l'efficacité énergétique avancés dans la présente étude ont été obtenus d'une manière globale dans l'hypothèse d'atteindre en 2030 les performances énergétiques actuelles des pays d'Europe. Nous préconisons ainsi de mener des audits d'efficacité énergétique afin de mettre en relief les secteurs économiques à envisager tout en les classant selon l'importance des économies d'investissements énergétiques à enregistrer. Les émissions de Co₂ estimées dans la présente réflexion ne peuvent que consolider de tels audits.

DEROULEMENT DE L'ETUDE

CONTEXTE DE BASE DE L'ETUDE

L'Objectif fondamentale de toute politique énergétique reste d'assurer l'adéquation entre l'offre et la demande d'énergie du pays considéré.

Ayant été au cœur de tout développement socio-économique, l'énergie fossile devient de plus en plus rare et par conséquent de plus en plus noble et chère. La facture énergétique devient ainsi assez fatidique, notamment pour les pays fortement importateurs d'énergie comme le Maroc. Ce qui se traduit par une ponction de plus en plus excessive sur notre Produit Intérieur Brut.

Force est par conséquent de procéder à une évaluation assez minutieuse de nos besoins futurs en énergie, en s'acharnant ainsi à mieux orienter l'impact du facteur énergie dans le cout de revient de tout produit ou service résultant. L'axe fondamental de la politique énergétique d'un pays donné consistera alors à satisfaire les besoins en énergie de ses opérateurs socio-économiques dans les meilleures conditions de sécurité et de cout.

Ce qui nous amène, par voie de conséquence, à traduire en termes d'énergie à rendre disponible, les stratégies sectorielles récemment établies par nos hautes autorités. De telles stratégies englobent le secteur de l'agriculture par le biais du plan Maroc vert, le secteur de l'industrie selon le plan émergence, partiellement le secteur tertiaire à l'aide du plan touristique ainsi que le secteur de l'énergie à travers sa Stratégie énergétique nationale adoptée lors des dernières assises énergétique tenues à Oujda en date du 31 Mai 2011. Il est de même de l'Initiative du développement humain dont le souci consiste à améliorer les revenus des ménages.

Dès lors, l'activité socio-économique souhaitable pour un pays doit dépendre principalement de sa croissance démographique et de sa croissance économique.

S'agissant de la croissance démographique, il s'agit, en tout et pour tout, de définir au préalable le mode de vie futur des ménages selon leur milieu d'appartenance. Signalons à ce stade que notre pays connait une véritable aubaine démographique constituée par des ressources humaines assez jeunes qu'il s'agit de rentabiliser afin de créer des richesses sous forme de valeurs ajoutées dans l'ensemble des secteurs économiques.

Quant à la croissance économique, il est plutôt question de prévoir l'évolution du produit intérieur brut accompagnée par celle de sa propre composition. D'autres facteurs de développement socio-économiques peuvent être étayés. Nous citons à ce niveau l'électrification rurale, la lutte contre la déforestation du pays par la « butanisation » du monde rural, la part du Revenu disponible des ménages dans le PIB ainsi que tout autre facteur venant consolider l'émergence de l'économie de notre pays.

Bref, il nous est donc assez profitable que la politique économique de notre pays soit préalablement bien définie afin de mieux induire les besoins en énergie à moyen et long terme requis par le développement des secteurs économiques en question.

Par ailleurs, le caractère assez noble de l'énergie nous incite à instaurer des scénarios énergétiques assez parlants afin de mieux la consommer. Ce qui revient à assurer notre développement socio-économique en optimisant la composante énergie par le biais de l'efficacité énergétique, jusque-là considérée comme un gisement « virtuel » d'énergie non des moindres.

Par la même occasion, l'assurance de notre autonomie énergétique nous invite à renforcer la présence des énergies renouvelables au niveau de notre bouquet énergétique, telles énergies nous permettant principalement la réduction de notre dépendance énergétique vis-à-vis de l'extérieur, la création de nouveaux emplois ainsi que le transfert de technologie combien utile pour le développement de nos secteurs socio-économiques. Le développement des schistes bitumineux n'est pas à exclure de notre scène énergétique. Il en est de même l'énergie nucléaire.

Soit. Le futur énergétique de notre pays ne doit cependant pas être deviné, mais plutôt construit en se basant sur l'approche systémique et prospective dans le but ultime reste de prospecter l'avenir en le construisant au lieu de simplement le prévoir. La délimitation de nos capacités économiques, sociales et énergétiques doit être alors à la base d'une telle prospective.

Sachant que l'énergie est inéluctablement source d'émissions de gaz à effet de serres, l'évaluation des émissions de dioxyde de carbone par scénario économique ainsi que la déduction des économies de ce même dioxyde résultantes des activités d'efficacité énergétique viendront estimer les investissements nécessaires en vue de les réduire ou voir même de les éradiquer.

A ce stade, nous avons admis un coefficient de combustion du dioxyde en question évalué à 0,98.

En outre, alors que les années 2000 et 2006 sont déjà effectives, les données relatives à l'année 2012 ont été estimées en se basant sur celles e 2011 également effectives.

HYPOTHESES DE BASE DE L'ETUDE

L'étude ici présente suppose admises les hypothèses suivantes :

- La demande électrique générée par chaque scénario inclut la marge de réserve électrique de 10 à 15% de la même demande et donc fonction de la structure du parc électrique global de l'année considérée;
- La demande d'énergie primaire a été évaluée selon les coefficients d'équivalence énergétique anciennement retenus par le Département de l'Energie et des Mines. Cependant, concernant l'électricité primaire, nous avons retenu le rendement moyen de l'ensemble du parc électrique thermique, même si la tendance actuelle consiste à adopter une équivalence électrique à la consommation. L'évolution dudit rendement se présente comme suit :

Année	1912	2020	2030
Rendement moyen (En %)	38	40	42
Equivalent d'un Gwh	220	212	205
(En Tep)			

Toutefois, il aurait été possible d'opter pour le coefficient d'équivalence de l'électricité primaire en prenant 1 Gwh = 222 Tep, correspondant au rendement évalué à 38,7 % de la centrale thermique étalon à charbon anciennement adoptée. Un tel coefficient correspondait quasiment au rendement moyen du parc à l'époque dans la mesure où le parc électrique fonctionnait essentiellement au charbon. Une telle optique serait contredite dans la mesure où notre parc électrique devient plus diversifié et donc incluant des rendements beaucoup plus élevés que celui des centrales classiques à charbon. Nous sommes également en présence du cycle combiné à gaz naturel à rendement pouvant atteindre 59% et du renouvelable dont le rendement atteint 100% quant à l'électricité hydraulique.

Dans le même ordre de considérations, les rendements de nos centrales électriques thermiques et ainsi que les coefficients d'équivalence énergétique y afférents ont été estimé comme ciaprès :

Rendement	2012	2020	2030
Charbon 34		38	40
Fuel oil	35	35	35
Gaz naturel	52	55	57

Equivalent d'un Gwh	2012	2020	2030
Charbon	250	225	215
Fuel oil	245	245	245
Gaz naturel	165	155	150

Notons que pour les schistes bitumineux de Timahdit, leur pouvoir calorifique est de l'ordre de 0,15 Tep pour une tonne de schistes (soit 1436 Kcal/Kg).

Nous admettons également l'introduction du charbon propre dans notre secteur électrique dès 2015 ainsi que celle d'un Terminal gazier à compter de 2016 ;

- La demande d'énergie finale a été évaluée selon l'équivalence énergétique retenue par l'Agence International de l'Energie d'une part et par le Département de l'énergie et des Mines pour le gaz naturel d'autre part. La demande de l'électricité finale a donc été évaluée selon l'équivalence à la consommation, i.e., 1 Gwh = 86 Tep. Signalons à ce stade que nous avons admis environ 2% de pertes de distribution de la demande en produits pétroliers, de celles du charbon et du gaz naturel dans l'industrie;
- Pour ce qui est du gaz naturel, l'introduction d'un terminal gazier a été retenue à compter de l'année 2015. Ce terminal viendra compenser la rupture du contrat SONATRACK-ONE devant avoir lieu en 1921, ainsi que le possible arret du Gazoduc Maghreb Europe prévu pour la meme date, dans le cas où ce dernier n'est ni remplacé ni rénové;

Les apports de ce terminal viendront alimenter le secteur de l'électricité avec des quantités de 1,5 Milliards Nm3 en 2015 ; 3,5 en 2020 et 8 en 2030. Les secteurs de l'Industrie et du raffinage seront alimentés, à leurs tours selon des quantités de 2,5 Milliards Nm3 en 2020 et 2,5 en 2030 ;

A ce stade, les importations du charbon viendront équilibrer les quantités de combustibles requises par notre parc électrique. Le charbon jouera alors un rôle de régulateur vis-à-vis de l'ensemble de la production électrique qu'elle soit primaire ou secondaire. Les quantités de fuel oil à des fins électriques ne subiront pas assez de fluctuations. De même, les importations et les exportations d'électricité ainsi que les Stations de Turbinage et de Pompage viendront renforcer ce rôle de régulation ;

Nous retenons également ce qui suit :

- Pour ce qui est des énergies renouvelables, nous tenons à rappeler que leur apport en électricité demeurera identique pour l'ensemble des scénarios, qu'ils soient avec ou sans maitrise d'énergie. Il est cependant possible d'augmenter ledit apport dans le cas du scénario économique « Haut » vu les richesses plus appréciables devant être générées par ce dernier, ce qui n'a pas été envisagé par la présente réflexion;
- S'agissant de l'efficacité énergétique, nous signalons que le potentiel d'économie d'énergie y afférent doit être évalué par le biais d'audits énergétiques. Nous retenons ainsi des cibles d'économie d'énergie de l'ordre de 6 à8% en 2012, 12% en 2020 et 15% en 2030 relativement à l'énergie finale conventionnelle. Le cas des énergies traditionnelles, telles que le bois de feu et le charbon de bois a été envisagé séparément dans l'hypothèse de mieux utiliser les fours améliorés relativement au bois de feu, principalement dans le milieu rural. Signalons malgré tout que la forte urbanisation que connaitra notre pays dans le long terme aura comme conséquence immédiate la réduction de ce type d'énergie;
- Quant au développement des schistes bitumineux et de l'électricité nucléaire, ils feront l'objet d'un mix énergétique à partir de l'année 2030, in fine, il s'agit de constater leur substitution au charbon et au gaz naturel dans le but d'améliorer notre compétitivité énergétique, technologique

ainsi que notre sécurité d'approvisionnement énergétique se basant aussi sur la diversification de nos sources d'approvisionnement.

- C'est ainsi qu'a été défini le scénario 2 relatif au développement de ces deux formes d'énergie en présence du gaz naturel ;
- Enfin, une fois les bilans d'énergie primaire et finale à l'horizon 2030 établis, nous procédons à l'évaluation des impacts de tels bilans sur l'environnement. Les coefficients d'émission de Co₂ retenus sont ceux adoptés par la communauté internationale (Tonne de Co₂/Mole). Evalués selon l'équivalence retenue par l'AIE, ils peuvent être énumérées comme ci-aprèés :

(En Tonne de Co₂/Tep)

									Energies	Schistes
Fuel oil	Charbon	Gaz naturel	Propane	Butane	Essences	ATK	Gas oil	P. brut	Traditionnelles	bitumineux
3,2	4,0	2,3	2,6	2,6	2,9	3,0	3,1	0,15	3,4	4

En toute rigueur, les émissions de Co₂ retenues pour les énergies traditionnelles (Charbon de bois et bois de feu) doivent être compensées par la foret elle-même dans le cas d'un équilibre entre l'arbre coupé à des fins de combustion et l'arbre en développement et surtout en reboisement, et ce dans l'objectif d'une sauvegarde saine et sauve de notre foret. Ce peut être le cas au-delà de 2030 dans la mesure où nous admettons que la foret idéale sera atteinte à cet horizon.

Il est de même dans le cas des énergies renouvelables jusque-là considérées comme étant propres, alors qu'elles présentent malgré tout des émissions de Co₂ dues à l'acier et au ciment utilisés lors de la fabrication des équipements requis à cette fin, au transport, à la maintenance ainsi qu'au démantèlement des équipements en question. Ces coefficients d'émission en g/Gwh sont estimés comme suit :

Eolien	3 à 22
Solaire photovoltaïque	50 à 150
Biomasse	0 à 1500
Hydraulique	4 à 7
Nucléaire	6

Pour les centrales thermiques classiques :

Charbon	750 à 1100		
Fuel oil lourd	850		
Gaz naturel (Cycle combiné)	400		

 Alors que le scénario économique « tendanciel de référence » tente de sauvegarder les tendances passées à la fois de la croissance économique et de la croissance énergétique, le scénario économique « Haut », quant à lui, s'acharne à mieux renforcer notre croissance économique en la faisant tendre vers celle permettant d'approcher l'émergence économique de notre pays. • Signalons à cet effet qu'un scénario dénommé « Disruptif » a été également retenu par la Stratégie Energétique Nationale et que nous ne l'avons pas détaillé dans la présente. Un tel scénario prévoit une demande en énergie primaire de 19 MTep en 2012, 33 en 2020 et 65 en 2030. La demande d'électricité appelée nette correspondante est quant à elle estimée à 34 Twh en 2012, 61 en 2020 et 133 en 2030. Ledit scénario correspondrait à une croissance économique de l'ordre de 5,5% entre 2006 et 2012, 7% entre 2012 et 2020, et de 7,5%. entre 2020 et 2030. Ce qui correspondrait à une croissance économique annuelle moyenne d'environ 6,8% au cours de la période 2012-2030, autrement dit avoisinant le scénario de croissance économique retenu par le Centre de Conjoncture Economique du Maroc (Environ 6,2% sur une période de 20 ans), tel scénario permettant l'émergence de notre pays sur une période de 20 ans, c'est-à-dire à l'horizon 2030.

Au total, le scénario économique « Bas » est essentiellement axé, voir basé sur la Stratégie Energétique Nationale arrêtée lors des dernières assises énergétiques tenues à Oujda en date du 31/Mai/2011, en présence de Sa Majesté le Roi Mohammed VI que Dieu l'assiste.

SCENARIOS SOCIO ECONOMIQUES ET D'EFFICACITE ENERGETIQUE

Nourri par une volonté de développement socio-économique louable, due au lancement de nouveaux projets de développement d'infrastructures de base d'une part, ainsi que d'une disponibilité de ressources humaines capables de mener à terme un tel développement, le Maroc ne doit, en aucun cas, céder de place à des scénarii catastrophiques de développement économique et social. En effet, soucieux de son rôle à jouer dans la scène économique internationale, caractérisée par la présence d'une mondialisation ne profitant, en premier abord, qu'aux nations développées et émergentes, le Maroc devra mettre en œuvre sa compétitivité vis-à-vis des nations en question.

C'est ainsi que notre pays se trouve dans l'obligation de rompre avec les tendances passées, caractérisées par la protection par l'Etat de notre tissu économique, en poussant à l'extrême sa politique de globalisation. Deux contraintes viennent s'imposer à cette fin : maîtriser sa croissance démographique d'une part, et maintenir, sinon renforcer encore plus sa croissance économique d'autre part.

Prévoir la demande d'énergie à l'horizon 2030 revient avant tout à définir le comportement au même horizon de notre population ainsi que du type d'économie à adopter dont l'objectif primordial reste et demeure la satisfaction à moindre coût des besoins énergétiques et économique des acteurs socioéconomiques. En d'autres termes, comment devront évoluer les secteurs économiques afin de générer plus de valeurs ajoutées, et donc de rehausser les revenus des ménages en optimisant la demande d'énergie en même temps que d'assurer de bonnes infrastructures à la fois économiques et énergétiques ?.

Répondre à de telles attentes reviendrait à bien cerner à la fois notre croissance démographique et notre croissance économique en insistant sur les possibilités d'efficacité énergétique en relation directe avec le pouvoir d'achat du consommateur final ainsi qu'avec l'optimisation de la rentabilité de nos investissements économiques en général, et de nos investissements énergétiques en particulier.

Notons à cet égard que le coût de revient d'un produit ou service économique donné dépend des facteurs de production qui sont le capital investi, la main d'œuvre employée, les matières premières utilisées ainsi que l'énergie dépensée par l'opérateur socioéconomique en question. Cette relation peut s'écrire :

Coût de revient = f (Capital, Travail, Matières premières, Energie)

Aussi, optimiser le coût de revient du produit ou du service en question nous amène à optimiser au maximum le facteur Energie, dont dépendent en général les autres facteurs de production, en agissant à la fois sur les investissements énergétiques combien colossaux, et en même temps nécessaires à cette fin, ainsi que sur le choix des diverses formes d'énergie à moindre coût et capables de préserver l'environnement.

En corollaire, nous nous proposons d'anticiper le futur en mettant en relief un scénario de croissance démographique unique et en simulant deux scénarios de croissance économique, lesquels scénarios devant être, bien entendu, basés sur la maîtrise de l'avenir de notre démographie ainsi que sur nos ambitions de développement économique et social combien mis en évidence depuis déjà plusieurs

années. Deux scénarios énergétiques viendront se greffer à ces deux scénarios macroéconomiques, comme quoi la volonté d'économiser l'énergie n'échappe pas à nos ambitions "civilisationnelles" relevant du progrès énergétique et technologique.

L'enveloppe constituée par l'ensemble de ces scénarios démographique, macroéconomiques et énergétiques sera à la base de notre analyse prospective de la demande énergétique à l'horizon 2030.

I) Croissance démographique :

« Les démographes ont beaucoup plus de certitude que les économistes lorsqu'il s'agit de prévoir l'avenir. En s'appuyant sur la pyramide des âges, qui donne le nombre de personnes déjà nées et encore vivantes, et sur une tendance très stable de l'allongement de l'espérance de vie, la part d'aléas des prévisions démographiques est réduite à un seul élément : la fécondité ».

En termes plus clairs, la population marocaine a atteint 29 891 708 habitants en 2004. Elle a enregistré une évolution annuelle moyenne de 1,64 % entre 1990 et 2000 contre 2,3 % entre 1961 et 2003. Ce qui caractérise une rupture d'une telle croissance avec le régime traditionnel caractérisé par les niveaux élevés de la natalité et de la mortalité. Le Haut-Commissaire au Plan note que « depuis les années 50, une baisse de plus de 2/3 a été enregistrée par la mortalité infantile et de plus de la moitié par la mortalité maternelle. Avec, naturellement tout ce que cela entraîne en terme d'espérance de vie qui est en augmentation constante ». Une telle espérance est passée de 47 ans en 1962 à 71 ans en 2004.

En contrepartie, signale le même Haut-Commissaire, « une baisse de la fécondité a été notée, progrès socio-économique oblige. Ceci serait dû essentiellement au mariage tardif chez les jeunes des deux sexes et à l'usage fréquent des moyens contraceptifs » Le taux de fécondité en question est passé de 7 enfants par femme en 1962 à 2,5 en 2004. Et à lui d'ajouter que « Malgré une tendance de stabilité, la population marocaine devient assez exigeante et aspirant à une vie meilleure ».

« La modification de la structure des âges de la population marocaine est l'une des implications les plus profondes de la transition démographique. Dans les années à venir, le nombre de personnes parvenues à l'Age de travailler ne cessera de croître. Ceci interpelle sérieusement notre système éducatif, nos entreprises et notre capacité globale à mettre en place et à entretenir un environnement plus propice à la création suffisante d'emplois », stipule le Rapport sur les 50 ans de Développement Humain du Maroc et Perspectives 2025.

Il s'agit, en tout état de cause, d'exploiter le caractère jeune et compétent de notre population dans le souci d'aller de l'avant quant à l'accélération de notre croissance économique, gage de la satisfaction des besoins socio-économiques d'une telle jeunesse en pleine expansion. Dans le cas contraire, la même jeunesse vieillira dans quelques prochaines années, ce qui nous mettra dans l'obligation d'assurer à nos futurs aînés une prise en charge sanitaire, financière et sociétale hors portée de nos ressources économiques, faute de manque de progrès économique dont la population en question devait être à l'origine. Signalons, à cet effet, que 20 % des marocains auraient plus de 60 ans en 2040 alors que 7 % seulement l'avaient en 1960. Les 7 % restant inchangés jusqu'en 2004. Soit alors une croissance d'environ 13 %.

Ceci étant, l'ensemble de ces considérations, conjuguées aux prévisions du CERED (Centre d'Etudes et de Recherches Démographiques), consistant à l'adoption d'un scénario démographique qui admet un indice de fécondité de 1,2 mais croisé avec un jeu d'immigrations basses (montée progressive jusqu'à 360 000 par an vers 2030) nous permet d'adhérer au scénario de croissance démographique retenu ci bas.

En outre, et vu l'amélioration des conditions de vie des ménages, à l'origine même du ralentissement du taux de croissance de nos populations urbaine et rurale, le nombre de personnes par ménage dans le milieu urbain a été de 5,1 en 1990 et de seulement 4,9 en 2000, correspondant ainsi à des nombres de ménages respectifs de 2 325 000 et 3 253 000 ; alors que celui du milieu rural a atteint 6,4 en 1990 et 6,7 en 2000, ce qui porte le nombre de ménages dans le même milieu respectivement à 1 973 000 et 1 920 000.

Face à de telles tendances, caractérisées par une nette nucléarisation de nos familles à la fois urbaines et rurales, nous avons retenu un nombre de personnes par ménage et par milieu cité ci-dessous. Le tout étant de bien se rendre à l'évidence que malgré un net reculement du taux d'évolution de la croissance démographique, notre population aura tendance à s'urbaniser de plus en plus et le nombre de nos ménages ne cessera de se multiplier à la fois en zones urbaine et rurale. Ce qui reviendrait à renforcer encore plus la politique de l'habitat et de l'urbanisme dans les pas deviennent de plus en plus géants.

Toutefois, le ralentissement de l'évolution de nos populations urbaine et rurale ne signifie en aucun cas que nous devrons assister à un ralentissement s'agissant de l'évolution de notre croissance économique. Bien au contraire, les besoins de nos populations actuelle et future ne se présentent guère entièrement satisfaits et ne le seront que suite à une croissance économique forte et à la fois régulière et persévérante.

Les projections par milieu urbain et rural de la population, du nombre de ménages et de la taille des ménages à l'horizon 2030 se résument comme ci-après :

I) SCENARIO DE CROISSANCE DEMOGRAPHIQUE:

-Croissance démographique (En %):

2000-2006	2006-2012	2012-2020	2020-2025	2025-2030	2006-2030
0,96	1,07	0,96	0,79	0,79	0,92

-Population par milieu (En 10^3 Habitants)

							Evolution
							2006-
	2000	2006	2012	2020	2025	2030	2030
Taux d'urbanisation (En %)	55	56	59	62	62	64	
Milieu Urbain	15 940	17 079	19 185	21 762	22 636	24 303	1,48%
Milieu rural	12 865	13 427	13 332	13 338	13 873	13 671	0,07%
Population totale	28 805	30 506	32 518	35 101	36 509	37 974	0,92%

-Nombre de personnes par ménage

	2000	2006	2012	2020	2025	2030
Milieu Urbain	4,9	4,6	4,3	3,9	3,6	3,6
Milieu rural	6,7	5,9	5,6	5,1	4,2	4,2

-Nombre de ménages par milieu (En 10^3)

	2000	2006	2012	2020	2025	2030
Milieu Urbain	3 253	3 713	4 462	5 580	6 288	6 751
Milieu rural	1 920	2 276	2 381	2 615	3 303	3 255
Total ménages	5 173	5 989	6 842	8 195	9 591	10 006

II) SCERNARIO DE CROISSANCE ECONOMIQUE:

S'agissant de la croissance économique, il y'a lieu de noter que notre économie future dépend étroitement de nos choix présents en matière de développement économique sectoriel qui, à son tour, dépend du degré de l'importance de notre intensité énergétique future : devons-nous opter pour une économie basée essentiellement sur les services, et donc pour une génération de plus de valeur ajoutée avec moins de quantités d'énergie, ou alors, inversement, devons-nous opter pour le développement de l'industrie lourde plus consommatrice d'énergie et moins génératrice de valeur ajoutée ? Tel est le choix que nous tentons d'élucider ci-dessous selon la répartition sectorielle de notre PIB (produit intérieur brut) à l'horizon 2030, les années 1990 et 2000 étant déjà réalisées.

COMPOSITION DU PRODUIT INTERIEUR BRUT

	2 000	2 012	2 020	2 030
Agriculture (y compris pêche)	0,14	0,14	0,12	0,11
Industrie (Y compris BTP)	0,28	0,29	0,32	0,34
Services (*)	0,58	0,57	0,56	0,55
PIB total	1,00	1,00	1,00	1,00

(*) Y compris les transports

En s'inspirant de l'évolution par le passé de la répartition de notre produit intérieur brut, et en se fixant comme objectif l'optimisation de ce dernier, la même répartition ici présente a été obtenue selon des considérations se rapportant aux enjeux pouvant être de mise au niveau des cinq secteurs économiques mis en jeu, le secteur énergétique n'en faisant pas partie. A ce stade nous énumérons ce qui suit :

1) Secteur de l'agriculture :

Il est à rappeler que malgré les aléas climatiques aussi sévères qu' a connu notre pays dans le passé récent, le secteur agricole a permis une forte participation à notre développement socioéconomique observé par le passé. En d'autres termes, notre secteur agricole continuera encore à jouer son rôle dans la formation de notre produit intérieur brut, notamment suite à l'adoption du plan « Maroc vert » initié par nos Hautes autorités et dont le principal but sera de mieux valoriser la valeur ajoutée générée par ledit secteur.

En effet, nos précipitations annuelles moyennes sont de 140 milliards de m³ dont 118 milliards sont « évapo-transpirés ». Les ressources en eau disponibles sont alors de 22,2 milliards de m³ dont 5,2 milliards ne sont pas mobilisables. Reste ainsi 17 milliards de m³ d'eaux mobilisable dont 13 milliards d'eaux de surface et 4 milliards d'eaux souterraines. Parmi les 13 milliards de m³ d'eau de surface, 9,7 milliards seulement sont régularisés actuellement et reste encore à régulariser 3,3 milliards de m³ qui partent en mer.

Toutefois, 55% des 9,7 milliards de m³ d'eaux de surface régularisées actuellement partent sous forme de pertes à cause de l'utilisation encore non rationnelle des eaux en question. Ce qui revient à dire que l'utilisation rationnelle de l'eau d'irrigation ainsi que la mobilisation de ce qui reste encore à mobiliser nous incite à croire à l'importance future et persistante de notre secteur agricole. Cependant, la part de l'agriculture dans le PIB connaîtra une baisse à compter de 2010 en vue de permettre un démarrage assez notable pour les autres secteurs qui, en tout état de cause, doivent assurer la continuité du processus de notre développent socioéconomique qui ne devra pas se baser éternellement sur les ressources agricoles : notre pays présente les caractéristiques d'un pays semi-aride !

Signalons également que l'écart entre les parts de l'agriculture dans la composition du PIB selon la pluviométrie observée s'amoindrit au fil des ans à cause particulièrement de l'importance acquise de plus en plus par les secteurs non agricoles notamment le secteur de l'industrie.

A plus forte raison, le développement du secteur de l'agriculture, grâce à une mécanisation assez poussée ayant déjà été initiée depuis les années soixante, et donc à une consommation d'énergie de plus en plus significative, nous épargnera le recours aux importations des produits agricoles nécessaires à l'alimentation de nos citoyens ainsi que de nos touristes dont le nombre est en pleine augmentation depuis la décennie 90. Le même secteur a toujours été le principal pilier de notre économie en ce sens qu'il nous a permis et continue de nous permettre l'accès à l'exportation des produits alimentaires dont les entrées en devises n'ont cessé d'alimenter les secteurs de l'industrie et des services en outils de production importés et donc à mieux se développer.

2) Secteur des bâtiments et travaux publics :

Ce secteur a connu ces dernières années un développement sans précèdent (Infrastructures de base tels que les ports, les aéroports, les autoroutes, les routes...). Ce développement se prolongera encore dans la mesure qu'il y'a des corrélations étroites entre le développement de notre économie en général et du secteur des bâtiments et travaux publics en particulier

3) Secteurs de l'industrie et des services :

D'une part, opter pour le développement du secteur de l'industrie implique un transfert de technologie non des moindres. Toutefois, ce secteur est constitué d'industries grosses consommatrices d'énergie et moins génératrices de valeur ajoutée et d'industries légères moins consommatrices d'énergie et plus génératrices de valeur ajoutée.

Les industries grosses consommatrices d'énergie sont les industries du ciment, du sucre, du papier, de la pâte à papier, des phosphates, de l'acide phosphorique et des engrais. Les industries légères sont plutôt les industries agroalimentaires, les industries du textile et cuir, les industries chimiques et para chimiques, les industries mécaniques, métalliques et électroniques, les industries de matériaux de

construction et des bâtiments et travaux publics ainsi que les activités minières. A toutes ces industries légères, il faut ôter les industries grosses consommatrices correspondantes.

D'autre part, opter pour le développement du secteur des services, composé par les branches de tourisme, du commerce, des hôpitaux, de restauration, d'hébergement et des services administratifs, nous permettra d'acquérir des parts massives de valeurs ajoutées en consommant des quantités d'énergies loin d'être signifiantes. Cependant, la gestion de telles branches nécessite de hautes technologies dont notre pays n'est pas encore propriétaire. A cette fin, la refonte globale de nos programmes scolaires et universitaires s'impose. Ce qui ne va pas sans exiger des ressources monétaires assez fatidiques: Le développement humain, basé particulièrement sur l'éducation et la santé, se trouve ainsi au cœur de notre développement économique et social. Les deux secteurs de l'industrie et des services doivent par conséquent connaître des développements aussi complémentaires que possible.

4) Secteur des transports :

L'activité de transport est une activité commune à tous les secteur économiques y compris le secteur des ménages dans la mesure où il est censé assurer le déplacement de tout produit ou bien économique et toute personne participant au développement socioéconomique du pays. L'importance d'un tel secteur s'apparente capitale à l'échelle de tous les modes de transport.

Quant au choix de la croissance économique à l'horizon 2030, celle-ci a enregistré une moyenne annuelle de l'ordre de 4,2% au cours de la période 1960-2010. Une telle performance, même si elle a été à l'origine du niveau de développement socioéconomique actuel de notre pays, devient insuffisante à cause de la pauvreté et de l'exclusion qui sévissent encore notre pays. Nos pouvoirs publics ont alors jugé nécessaire de passer à des vitesses supérieures tout en rompant avec le passé afin de porter ladite croissance à au moins 6%. De telles ambitions se trouvent de nos jours bien justifiées vu l'importance de l'ensemble des chantiers initiés par nos Hautes Autorités.

Nous envisageons ainsi deux scénarios macroéconomiques « Haut » et « Bas » que nous résumons comme ci-après :

-Croissance économique (En %):

	2000- 2006	2006- 2012	2012- 2020	2020- 2025	2025- 2030
Scénario de référence à "caractère tendanciel"					
(Croissance économique modérée)	5	5	4,8	4,6	4,4
Scénario macroéconomique "Bas"					
(Croissance économique moyenne)	5	5	5,5	5,3	5
Scénario macroéconomique "Haut"					
(Croissance économique forte)	5	5	6,5	6,3	6

Au niveau des deux scénarios macroéconomiques « Haut » et « Bas », il est à remarquer l'importance du développement de l'ensemble des secteurs économiques, notamment les secteurs de l'industrie et des services.

III) SCENARIO D'EFFICACITE ENERGETIQUE:

Malgré que notre consommation d'énergie par habitant reste faible, voire assez faible comparée aux pays développés, la maîtrise de notre consommation d'énergie doit faire partie des axes principaux de notre politique énergétique. Flambée des prix oblige, et donc persistance d'une facture énergétique qui ne cesse de grever le budget de l'Etat, le consommateur final d'énergie doit s'atteler afin d'acquérir des « réflexes » d'efficacité énergétique sachant pertinemment que c'est sa compétitivité qui est mise en question.

A ce stade, nous avons enregistrés deux scénarios énergétiques comme suit :

- Un scénario énergétique « Laisser Faire » se basant uniquement sur le progrès technologique observé à travers le monde en matière de maîtrise d'énergie; et
- Un scénario énergétique **« Maîtrise d'Energie »** se basant sur des actions volontaristes de maîtrise d'énergie en plus du progrès technologique admis par le scénario « Laisser Faire ». Nous avons admis, lors de la définition d'un tel scénario, que nos performances énergétiques en 2030 seront celles de l'Europe d'aujourd'hui avec des cibles relatives à l'énergie finale de l'ordre de 6 à 8% en 2012, 12% en2020 et 15% en 2030.

Au total, la présente analyse prospective de la demande d'énergie à l'horizon 2030 tourne autour de quatre scénarios de demande à savoir :

- Un scénario « Economique Haut Laisser Faire » ;
- Un scénario « Economique Haut Maîtrise d'Energie » ;
- Un scénario « Economique Bas Laisser Faire » ; et
- Un scénario « Economique Bas Maîtrise d'Energie ».

C'est dire que chaque scénario macroéconomique « Haut » ou « Bas « est associé à deux scénarios énergétiques « Laisser Faire » et « Maîtrise d'Energie ». La réalité doit être ainsi extraite de cette panoplie de scénarios en question.

Nous rappelons qu'à ces quatre scénarios simulés à l'aide du modèle MEDEE-Sud, nous avons jugé utile, voire opportun, d'introduire deux autres scénarios de « référence à caractère tendanciel » (« Référence Laisser Faire » et « Référence Maîtrise d'Energie ») dans l'optique de permettre au décideur de mieux se positionner afin d'opter pour un scénario de demande d'énergie possible et vraisemblable.

Faut-il rappeler que la demande d'énergie finale s'obtient comme demande d'énergie finale brute à laquelle nous retranchons les pertes observées au niveau du secteur énergétique A c titre; les pertes dans le secteur électrique ont bien été otées de la demande d'énergie finale en question, alors que nous avons admis des pertes de distribution des produits pétroliers; du charbon et du gaz naturel sont incluses dans la demande 'énergie finale (de l'ordre e 2 à 3%).

RESULTATS ET INTERPRETATIONS

Nous tenons à rappeler qu'en plus des deux scénarios macroéconomiques « Haut » et « Bas », nous avons introduit un autre scénario intitulé scénario de « Référence à caractère tendanciel ». Un tel scénario a été érigé en se basant sur les tendances de la demande d'énergie observées au cours de la période 2000-2006 tout en maintenant plus importante la demande d'énergie électrique au cours de la période 2006-2030. Ledit scénario permettra plutôt au décideur de bien se positionner en vue de se placer au voisinage d'un scénario de demande d'énergie à la fois vraisemblable et possible à retenir.

A cette fin, nous présentons ci- contre l'ensemble des résultats relatifs aux trois scénarios économiques envisagés conjointement associés à des scénarios de maîtrise d'énergie correspondants. Cependant, dans le but de réduire l'accumulation d'incertitudes résultant de toute actualisation, nous jugeons qu'en matière de consommations énergétiques par secteur et par usage, seul le scénario économique « Bas », assez semblable au scénario de « Référence à caractère tendanciel », se prête à une analyse assez détaillée en ce sens que notre croissance économique a été de l'ordre de 5 % entre 2000 et 2010 et sera fort probablement du même ordre entre 2010 et 2012. Nous admettons ainsi que ce scénario sera sans doute avoisiné à l'horizon 2030. Le scénario économique « Haut » est, à ce point de vue considéré comme un scénario de rupture pouvant être déduit par majoration du scénario économique « Bas ».

I-DEMANDE GLOBALE D'ENERGIE:

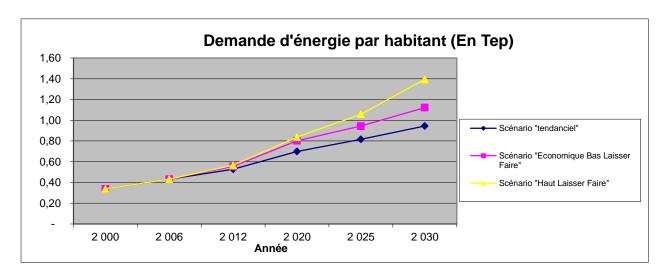
S'agissant de la demande globale d'énergie à l'horizon 2030, force est de constater que cette dernière prendra assez d'ampleur suite à la volonté de construire un avenir économique et social à la fois assez prospère et bien érigé. Elle se présente comme suit :

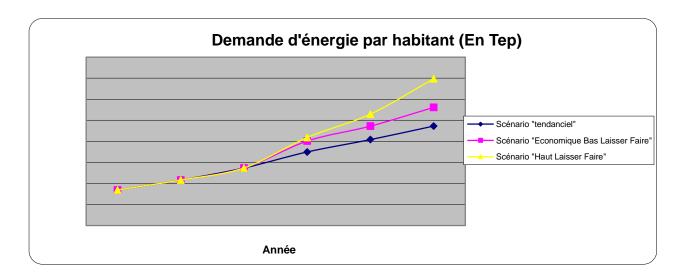
Récapitulatif de la demande d'énergie primaire par scénario (En 1 000 Tep):

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence	9 745	13 194	17 781	24 538	29805	36883	
à "caractère tendanciel BLF"		5,2%	5,1%	4,6%	4,5%	3,7%	4,4%
Scénario macroéconomique	9 745	13 194	17 781	28177	34471	42622	
"Bas Laisser Faire"		5,2%	5,1%	5,4%	5,3%	4,3%	5,1%
Scénario macroéconomique	9 745	13 194	17 781	29380	38662	52963	
"Haut Laisser Faire"		5,2%	5,1%	6,4%	7,1%	5,2%	6,2%

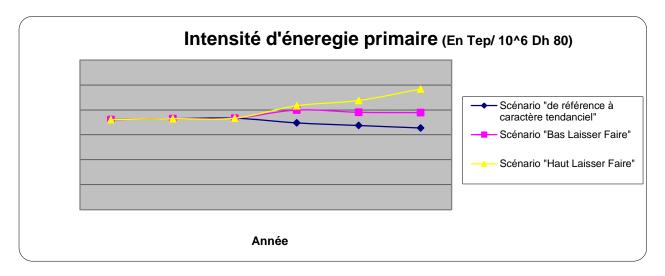
							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence	9 745	13 194	16866	22093	26021	30502	
"tendanciel Maitrise d'Energie"		5,2%	4,2%	3,4%	339%	3,2%	3,6%
Scénario macroéconomique	9 745	13 194	16866	24520	29025	33836	
"Bas Maitrise d'Energie"		5,2%	4,26%	4,8%	3,4%	3,1%	4,%
Scénario macroéconomique	9 745	13 194	16866	24951	33111	41841	
"Haut Maitrise d'Energie"		5,2%	4,24%	5,%	5,2%	5,4%	4,9%

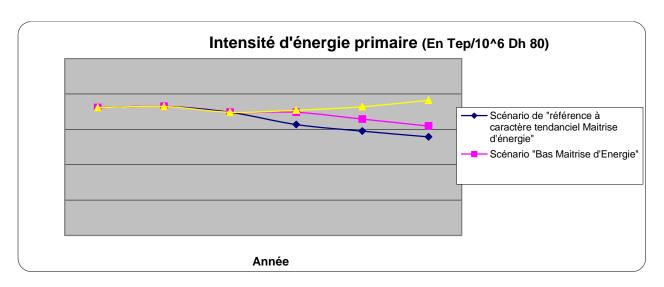
La structure de la demande d'énergie primaire par scénario se présente comme ci-après :


Scénario "Bas Laisser Faire"


a) En %:

	2 000	2 006	2 012	2 020	2 025	2 030
Combustibles (Fuel oil non compris)	28	33	28	43	45	44
Produits pétroliers	64	59	63	47	44	45
Energies renouvelables	2	3	3	10	11	11
Electricité importée	6	4	6	-	-	-
Nucléaire + Schistes bitumineux	-	-	-	-	-	
Total énergie primaire	100	100	100	100	100	100


Scénario "Bas Maitrise d'Energie"	2 000	2 006	2 012	2 020	2 025	2 030
Combustibles (Fuel oil non compris)	28	33	24	37	37	35
Produits pétroliers	64	59	66	51	50	51
Energies renouvelables	2	3	4	12	13	14
Electricité importée	6	4	6	-	-	-
Nucléaire + Schistes bitumineux	-	-	-	-	-	
Total énergie primaire	100	100	100	100	100	100


Quant à la demande globale d'énergie primaire par habitant, elle ne dépassera guère 1,4 Tep par an en 2030 quel que soit le scénario envisagé. C'est dire que malgré tous ces efforts d'intensification de la consommation future d'énergie par notre économie, nous ne dépasserons pas la moyenne annuelle mondiale actuelle, c'est-à-dire près de l'ordre de 1,8 Tep par habitant et par an. L'évolution de ladite demande se résume comme suit :

L'intensité d'énergie primaire, quant à elle, connaitra une nette hausse au cours de la période 2012-2020 à cause de la forte hausse de la croissance économique nécessaire au cours de la même période. Ce qui se traduit par une forte mécanisation de notre économie jusqu'en 2020, étape inéluctable dans le but de produire plus de valeur ajoutée en consommant davantage d'énergie. Par suite, elle évoluera en baisse au-delà de cette année. Ci-joint son évolution :

L'élasticité de la demande globale d'énergie primaire par rapport au PIB augmentera nettement au cours de la période 2012-2020, ce qui caractérise, encore une fois, la nécessaire mécanisation de l'économie, en l'occurrence les secteurs agricole et industriel, dans la mesure où les demandes d'énergie primaire et électrique varieront plus rapidement que le PIB. Au-delà de cet horizon, ces mêmes demandes évolueront mois rapidement que ce dernier. Ce qui est illustré par les tableaux suivants :

Elasticité de la demande d'énergie primaire par rapport au PIB

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence "tendanciel LF"	1,04	1,02	1,15	0,72	0,71
Scénario macroéconomique "B L F"	1,04	1,02	1,45	0,64	0,72
Scénario macroéconomique "H L F"	1,04	1,02	1,34	0,74	0,90

Elasticité de la demande d'électricité par rapport au PIB

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence "tendanciel LF"	1,47	0,94	0,86	0,99	1,03
Scénario macroéconomique "B L F"	1,47	0,94	1,00	1,11	0,92
Scénario macroéconomique "H L F"	1,47	0,94	1,10	1,08	1,16

Nous tenons à rappeler que l'intensité d'énergie primaire a toujours été assez faible par le passé dans la mesure où nos ménages ne disposaient pas de confort énergétique assez encourageant ni même les secteurs économiques n'étaient pas assez énergétivores comparativement aux valeurs ajoutées qu'ils ne cessaient de générer. Ce constat est fondamentalement dû au caractère de la cherté quelquefois permanente du facteur énergie.

S'agissant de l'analyse de la demande sectorielle d'énergie par forme et par secteur, nous passons en revue et brièvement les interprétations qui suivent :

1) L'énergie électrique :

Il va de soi que le développement d'un pays quel qu'il soit dépend avant tout de son degré d'électrification, notamment rural. A ce propos, l'étude rétrospective de la demande électrique de notre pays depuis l'indépendance montre que l'énergie électrique a toujours été au rendez-vous de notre développement économique et social. En effet, corrélée au Produit intérieur brut, la demande en question dégage une élasticité-PIB de l'ordre de 1,8 selon un coefficient de corrélation dépassant les 99 %. Un tel constat, au cours de la période 1961-2004 ne cesse de signaler l'importance du développement de notre secteur électrique.

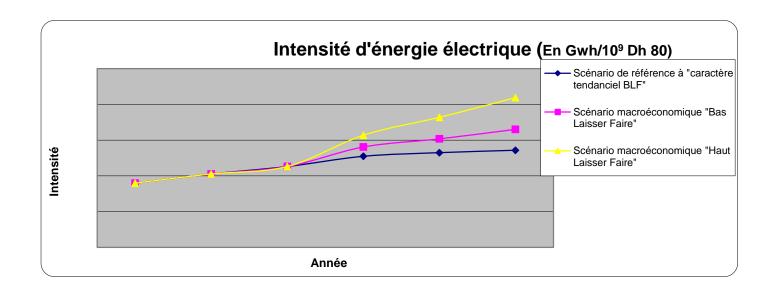
Même s'il est vrai qu'au cours des trois premières années de la décade 2000-2010 la demande électrique a évolué selon un rythme assez moyen ne dépassant guère 5 à 6 %, il ne demeure pas moins vrai que la même demande a fortement repris au cours de la période 2003-2010 en frôlant les 9 % en 2006. Ce qui s'explique particulièrement par le démarrage de l'ensemble des chantiers industriels et d'infrastructures de base récemment lancés par nos Hautes Autorités.

Ce développement électrique traduit bien l'importance de l'intensité électrique, en nette progression à l'horizon 2030 pour l'ensemble des scénarios envisagés dans la présente étude. Il en est de même de la demande électrique par habitant qui vient participer au renforcement du confort énergétique des ménages, eux même à l'origine du développement socio-économique espéré.

A l'origine de la production d'électricité dans les centrales thermiques se trouvent bien le fuel oil, le charbon et le gaz naturel. Notons à cet égard que le charbon et les énergies renouvelables se trouvent en base de notre courbe monotone de charge électrique, suivis du gaz naturel déjà plus coûteux, et donc en semi base, et du fuel oil au pic avant l'hydraulique parce que beaucoup plus cher comparé à son rendement électrique, de l'ordre de 38%.

Le permanent développement électrique qu'a connu notre secteur électrique par le passé et qu'il connaitra dans le futur se traduit comme suit :

Demande d'énergie électrique (En GWH)


	2 000	2 006	2 012	2 020	2 025	2 030
Scénario de "référence tendanciel LF"	12 143	18 572	27410	44 933	58 500	74 394
Scénario macroéconomique "BLF"	12 143	18 572	27410	49 512	67 010	90 386
Scénario macroéconomique "Ha L F"	12 143	18 572	27410	55 316	80 310	114 624

Evolution de la demande d'énergie électrique (En %)

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence à "caractère					
tendanciel"	7,3	6,7	5,4	5,4	4,9
Scénario macroéconomique "Bas Laisser					
Faire"	7,3	6,7	7,7	6,2	6,2
Scénario macroéconomique "Haut Laisser					
Faire"	7,3	6,7	9,2	7,7	7,4

Demande d'énergie électrique par habitant (En Kwh)

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de "référence tendanciel LF"	422	609	843	1 280	1 602	1 959	5,0%
Scénario macroéconomique "BLF"	422	609	843	1 411	1 835	2 380	5,8%
Scénario macroéconomique							
"H L F"	422	609	843	1 576	2 200	3 018	6,9%

2) Produits pétroliers :

Le pétrole a toujours été et restera toujours le principal pilier du développement de notre système économique, malgré que le fuel oil ait connu un remplacement déterminant par le charbon suite aux deux chocs pétroliers de 1973 et 1979, chocs ayant incité les opérateurs d'énergie à travers le monde à découvrir des réserves importantes de charbon aisément exploitables et donc permettant un coût du charbon moins important que celui du pétrole.

A l'horizon 2030, notre consommation de pétrole restera marquée principalement par le gasoil, le butane et le carburéacteur. La part des produits pétroliers dans notre bilan énergétique s'allégera à cause notamment de l'expansion de notre consommation d'énergie électrique combien indispensable pour toute émergence économique.

Signalons toutefois que la demande de gas oil sera soulagée grâce au développement économique régional tellement recommandé par nos Hautes Autorités ; tel développement permettra une autonomie régionale et par voie de conséquence la limitation de l'activité transport entre les quatre coins du Royaume. En outre, le développement du secteur agricole nécessitera des quantités plus accrues de gas oil en réponse au plan « Maroc Vert »

II-ENERGIES RENOUVELABLES:

La part des énergies renouvelables dans notre bilan d'énergie primaire ne cessera de s'accroitre sachant que la stratégie énergétique nationale a permis de les encourager vivement essentiellement pour leur caractère propre, leurs créations de nouveaux emplois et donc de richesses ainsi que leur participation à la réduction de notre dépendance énergétique. Leur caractère assez couteux venant s'estomper à cause de la cherté de l'énergie de plus en plus excessive. Cette part se caractérise comme suit :

PARTS DES ENERGIES RENOUVELABLES DANS LE BILAN D'ENERGIE PRIMAIRE

Scénario énergétique "Laisser Faire"

	2000	2006	2012	2020	2025	2030
Scénario de référence à "caractère tendanciel Laisser Faire"	2	3	3	12	14	16
Scénario macroéconomique "Bas Laisser Faire"	2	3	3	11	12	14
Scénario macroéconomique "Haut Laisser Faire"	2	3	3	10	10	11

Scénario énergétique "Maitrise d'énergie"

	2000	2006	2012	2020	2025	2030
Scénario de référence à "caractère tendanciel Maitrise						
d'Energie"	2	3	4	14	17	19
Scénario macroéconomique "Bas Maitrise d'Energie"	2	3	4	12	15	16
Scénario macroéconomique "Haut Maitrise d'Energie"	2	3	4	12	13	13

Par ailleurs, l'effort devant être consenti pour le développement des énergies renouvelables dans notre pays doit être prioritaire et ne devra pas ère subordonné à l'importance de la croissance économique retenue par nos autorités gouvernementales.

III- EFFICACITE ENERGETIQUE:

Fortement préconisée par nos pouvoirs publics, et dans l'objectif même du soulagement qu'elle puisse apporter à notre dépendance énergétique vis-à-vis de l'extérieur, l'efficacité énergétique constitue un gisement « virtuel » de production d'énergie dont le développement économique et social de notre pays ne peut ne pas en tenir compte. La tendance actuelle d'une telle politique d'efficacité énergétique à travers la planète ne peut que justifier l'encouragement de cette dernière au niveau du Royaume.

Cependant, comme tout gisement « virtuel » d'énergie, ses retombées positives au niveau de notre secteur énergétique ne doivent pas être des retombées pleinement garanties et assurées. Une marge de non complète réalisation d'un tel gisement doit être prudemment adoptée. A ce sujet, nous avons tenu à ne pas prendre en considération tout le potentiel d'économie d'énergie pouvant être générée par l'ensemble des actions volontaristes de maîtrise d'énergie qui peuvent être entreprises par les divers acteurs de notre scène socio-économique, en l'occurrence l'Office national de l'électricité qui préconise, à cet effet, un remplacement de 22 millions de lampes actuellement utilisées par le même nombre de lampes à basse consommation justifiant une consommation qui sera alors réduite au cinquième à l'horizon 2012 ; soit un gain en puissance électrique à la pointe de l'ordre de 800 MW. Nous avons réduit aux 2/3 une telle substitution en 2012 et pratiquement retenu le total du potentiel en 2020 et 2030.

Ajoutons à cela les économies d'énergie pouvant être générées par d'autres actions volontaristes de maîtrise de l'énergie, notamment dans les secteurs de l'industrie et du résidentiel via la « tarification dite incitative », dans le secteur des transports, dans le secteur du tertiaire, notamment grâce à la réduction de l'éclairage avec les lampes à basse consommation, et pourquoi pas dans le secteur agricole ; sans omettre les gains d'électricité générés par le passage à l'horaire « GMT + 1 » et par la généralisation de l'horaire continu à l'ensemble des secteurs public et privé.

Soit ! Les économies d'électricité retenues par la présente étude ne relatent pas l'ensemble des gains pouvant être générés. Nous tenons à cet effet à imputer toute la puissance électrique supplémentaire non comptabilisée à cet effet sur notre marge de réserve électrique qui reste encore à son stade le plus bas. Notons également que nos programmes de maîtrise de la demande d'énergie électrique à l'horizon 2012 doivent être relativement accélérés dans le principal objectif de soulager notre pointe électrique.

A cet effet, nous avons estimé les économies d'électricité par secteur économique en tenant également compte de notre scénario volontariste de maitrise d'énergie, à cause du fait que nous ne disposons pas encore des réalisations devant être constatés relativement à l'année 2012. Le Programme national des actions prioritaires retenu par le Département de l'énergie et es Mines nous a été d'un grand apport à ce sujet.

Les économies d'électricité et de puissance électriques estimées se résument comme suit :

ECONOMIE D'ELECTRICITE:

1) En Gwh:

	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"	2923	11 064	16 178	21 584
Scénario macroéconomique "Bas"	2923	11 953	17 064	27 805
Scénario macroéconomique "Haut"	2923	12 679	21 121	31 802

	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"	11	25	28	29
Scénario macroéconomique "Bas"	11	24	25	31
Scénario macroéconomique "Haut"	11	23	26	28

3) PUISSANCE ELECTRIQUE ECONOMISEE (En MW):

	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"	522	1 844	2 489	2 878
Scénario macroéconomique "Bas"	522	1 992	2 625	3 707
Scénario macroéconomique "Haut"	522	2 113	3 249	4 240

D'autre part, les économies d'énergie primaire se résument comme ci-après :

ECONOMIE D'ENERGIE PRIMAIRE:

1) En 1 000 Tep:

	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"	915	2445	3784	5 381
Scénario macroéconomique "Bas"	915	3 648	5446	8786
Scénario macroéconomique "Haut"	915	4429	6551	11112

2) En % de la demande d'énergie finale:

	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"	8	15	19	23
Scénario macroéconomique "Bas"	8	19	24	32
Scénario macroéconomique "Haut"	8	23	27	33

S'agissant de l'évolution de la demande énergétique sectorielle, nous notons ce qui suit :

ECONOMIE D'ELECTRICITE FINALE PAR SECTEUR (En Gwh)

Scénario économique "Bas":

	2012	2020	2030
Industrie	539	2 543	8 239
Transport	30	186	594
Résidentiel	1 80	5 601	10 943
Agriculture	12	113	498
Tertiaire	446	3 511	7 531
Total électricité finale	2887	11 954	27 804

ECONOMIE D'ELECTRICITE FINALE PAR SECTEUR:

(En % de la demande d'électricité finale):

(En 1000 Tep)

	2012	2020	2030
Industrie	5,8	13,6	25,7
Transport	3,1	9,4	12,3
Résidentiel	18,5	34,1	38,8
Agriculture	0,80	4,3	9,2
Tertiaire	9,0	35,9	37,9
Total électricité finale	10,5	24,1	30,8

PUISSANCE ELECTRIQUE ECONOMISEE PAR SECTEUR (En MW):

Scénario économique "Bas":

	2012	2020	2030
Industrie	107	424	1 098
Transport	5	31	79
Résidentiel	321	933	1 459
Agriculture	2	19	66
Tertiaire	80	585	1 004
Total Puissance électrique	516	1 992	3 707

Nous constatons qu'en termes d'électricité finale, les secteurs résidentiel et industriel seront les mieux lotis en étant suivis par le secteur du tertiaire. Le secteur agricole ainsi que le secteur ferroviaire ne présenteront pas des parts significatives dans la demande électrique globale à l'horizon 2030.

Les demandes sectorielles d'énergie finale et d'électricité viennent respectivement le justifier comme ciaprès :

Energie finale:

Scénario Bas Laisser Faire

En %

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	100	100	100	100	100	100
Agriculture	11	11	10	11	11	1
Industrie	33	28	27	26	24	20
Transport	33	34	32	32	30	28
Tertiaire	6	7	7	7	9	10
Résidentiel	17	21	23	23	26	32

Electricité finale

Scénario Bas Laisser Faire

En %

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	100	100	100	100	100	100
Agriculture	6	5	5	5	5	6
Industrie	42	36	41	38	38	35
Transport	3	7	3	4	4	5
Tertiaire	20	18	18	19	20	22
Résidentiel	30	33	33	36	33	31

IV) EMISSIONS DE Co₂

Malgré que notre demande d'énergie demeurera assez timide à l'horizon 2030 comparativement aux économies déjà développées ou émergentes, il serait souhaitable d'évaluer nos émissions de gaz à effets de serre dans la mesure où ils sont étroitement corrolés avec les activités d'efficacité énergétique. De telles évaluations nous permettent plutôt de peser l'importance de l'efficacité énergétique en question. Les économies de Co₂ en question par secteur économique sont évaluées comme suit :

ECONOMIES GLOBALES DE CO2 (En 1 000 Tonnes)

	2012	2020	2025	2030
Energie électrique	3 598	10 962	14 928	19 981
Combustibles industrie:	-	1 029	1 650	1 272
Fuel oil	_	635	92	198
Charbon	_	394	1 442	843
Gaz naturel	-	-	115	230
TOTAL PRODUITS PETROLIERS	-	1 556	4 521	4 829
(Fuel oil non compris)				
-Propane	-	58	117	322
-Butane	_	200	1 006	1 102
-butane	_	200	1 000	1 102
-Essences	-	30	30	46
-Carburéacteur	-	104	260	199
-Gas oil		1 164	3 107	3 161
-003 011	_	1 104	3 107	3 101
SOUS TOTAL	3 598	13 548	21 098	26 081
Raffinage de pétrole	-	322	678	739
Eergies traditionnelles	33	526	488	450
Energies renouvelables	5 636	12 001	16 737	23 110
Energie nucléaire				-
TOTAL GLOBAL	9 267	26 397	39 001	50 380

CONCLUSIONS ET RECOMMANDATIONS

En vue d'améliorer et de mener à terme les travaux de prévisions et de planification énergétiques qui ont porté jusqu'à nos jours spécialement sur l'analyse de la demande d'énergie à moyen et long terme, nous proposons ce qui suit :

1) Au niveau de la demande d'énergie :

L'analyse prospective de la demande d'énergie à l'horizon 2030 venant d'être explicitée ci-dessus est fondée sur les consommations énergétiques sectorielles estimées à partir de l'enquête sommaire de 1982 effectuée par l'USAID et de l'enquête sur les ménages de 1987 menée par les soins de la Société nationale des produits pétroliers, et ce pour les besoins des perspectives de demande énergétique sectorielle par usage à l'horizon 2030 simulée à l'aide du modèle MEDEE-Sud.

A ce stade, nous préconisons de reprendre les mêmes simulations de demande d'énergie à l'aide du modèle MED-PRO ayant pour particularité relativement au modèle MEDEE-Sud celle participant aussi à la programmation de l'offre électrique par le biais de la prévision de la courbe de charge électrique, tout en déduisant les impacts d'une telle demande d'énergie sur l'environnement à l'horizon escompté. A cet effet, l'exploitation des résultats de l'enquête sur les consommations énergétiques sectorielles par usage menée actuellement au sein de la DOP (Direction de l'Observation et de la Programmation) ne peut être que vivement conseillée ;

Signalons à ce sujet que plus les consommations énergétiques sectorielles par usage sont fiables, plus les résultats de demande d'énergie seront performants.

2) Au niveau de l'efficacité énergétique :

Nous rappelons que les résultats inhérents à l'efficacité énergétique avancés dans la présente étude ont été obtenus d'une manière globale dans l'hypothèse d'atteindre en 2030 les performances énergétiques actuelles des pays d'Europe. Nous préconisons ainsi de mener des audits d'efficacité énergétique afin de mettre en relief les secteurs économiques à envisager tout en les classant selon l'importance des économies d'investissements énergétiques à enregistrer. Les émissions de Co₂ estimées dans la présente réflexion ne peuvent que consolider de tels audits ;

Notons à ce stade que l'exploitation des émissions de Co2/Habitant ainsi que les intensités d'émissions de Co2 globales et par secteur économique viendront soutenir l'analyse du potentiel d'émissions de Co2 dans notre pays, et par voie de conséquence l'importance du potentiel d'économie d'énergie ne faisant que renforcer la préservation de notre environnement. De telles intensités sont en constante baisse, ce qui justifie l'importance des secteurs du tertiaire et de l'agriculture quant à la génération d'importantes valeurs ajoutées selon des consommations d'énergie moindres : le secteur de l'industrie viendra s'opposer à une telle tendance dans la mesure

où notre économie exige encore une importante mécanisation dans l'objectif de mieux renforce notre croissance économique par le biais du secteur de l'industrie d'ici à l'année 2030 au moins.

ANNEXES

CONDITIONS DE BASE DE L'ETUDE

A- POURQUOI PREVOIR LA DEMANDE D'ENERGIE A LONG TERME?

Avant le premier choc pétrolier de 1973, la politique énergétique au niveau mondial se basait particulièrement sur l'offre d'énergie. En d'autres termes, alors que le fournisseur de l'énergie devait répondre à toute demande d'énergie manifestée par le consommateur final, ce fournisseur incitait ce même consommateur à utiliser de l'énergie même si le besoin ne se faisait pas pressentir. En effet, le pétrole étant abondant et donc accessible à des prix assez bas, le fournisseur de l'énergie tenait à faire valoir sa politique d'offre en définissant lui-même les besoins futurs en énergie afin de conquérir les marchés énergétiques à travers le monde. On assistait tout simplement à une politique d'offre d'énergie.

C'est ainsi qu'après ce même choc pétrolier, l'énergie devenait de plus en plus coûteuse et son « gaspillage » ne pouvait que provoquer des effets néfastes à toute croissance économique d'un pays quel qu'il soit, et par voie de conséquence nuire au confort de ses respectables citoyens. Une nouvelle politique énergétique était née : la politique de demande d'énergie.

Par politique de demande d'énergie nous signifions l'ensemble des taches permettant l'utilisation rationnelle de l'énergie d'une part, et l'optimisation des investissements énergétiques nécessaires pour la satisfaction des besoins énergétiques exprimés par les divers opérateurs socio-économiques d'autre part. En tenant compte de leurs coûts et de leurs impacts sur l'environnement, les formes d'énergie à consommer doivent être élues d'une façon optimale et diversifiée. Dès lors, l'évaluation de la demande d'énergie à moyen et long terme s'impose.

Par ailleurs, les investissements énergétiques étant colossaux, les conditions territoriales de l'offre et de la demande d'énergie sont fixées pour longtemps. Le capital énergie devient alors amorti et consommé pendant une longue période, ce qui nous incite à admettre qu'une politique d'énergie est une politique de long terme. Le choix d'un cadre énergétique est donc possible mais ne peut être substantiellement modifié que pour les prochaines générations.

De ce fait, et à l'instar de l'Agence Internationale de l'Energie, crée en 1974 suite au premier choc pétrolier de 1973, et dont le rôle fut et demeure d'assurer la définition, le suivi et l'évaluation de la politique énergétique mondiale, nous avons opté, dans la présente étude, pour l'horizon 2030. Un tel choix se trouve également subordonné aux difficultés de conception et de financement des projets énergétiques assez exigeants relativement au paramètre temps et dont la durée de vie excède souvent une trentaine d'années.

Une telle politique énergétique, dont **l'axiome fondamental** consiste à assurer l'approvisionnement du pays en énergie dans les meilleures conditions de sécurité et de coût, doit être en mesure d'orienter la structure et le niveau du marché de l'énergie en tenant compte:

- Du partage des énergies conventionnelles et traditionnelles par secteur et par usage ;
- Du taux de pénétration de tel type d'énergie jugée stratégique ;
- De l'efficacité énergétique ;
- Des considérations particulières de certaines énergies stratégiques et leur orientation vers des secteurs économiques bien particuliers.

Notons à cet égard que des deux chocs pétroliers de 1973 et de 1979 a pris naissance la transition énergétique que nous vivons depuis lors et qui se maintiendra jusqu'en 2030, voire encore au-delà. C'est dire que les augmentations successives des prix de l'énergie qu'a connu le système énergétique mondial seront compensées par le développement des énergies non fossiles dont le coût est peut être encore élevé de nos jours, mais qui pourra baisser avec les économies d'échelle et le développement technologique : le Maroc se trouve bien immergé dans ce processus de transition.

Une telle transition viendrait, flambée des prix de l'énergie oblige, contrecarrer les fortes ponctions sur les excédents de productivité des divers pays fortement importateurs d'énergie, notamment les pays de l'Union Européenne et les Etats-Unis d'Amérique, en engageant d'importants investissements dans l'énergie nucléaire et les énergies renouvelables. Ce qui permettrait également de préserver l'environnement en réduisant les gaz à effets de serres.

A noter que les ponctions sur les excédents de productivité pour le cas du Maroc, à cause d'une énergie de plus en plus chère, viendrait réduire notre croissance économique. Réduire les effets néfastes sur notre économie dus à de telles ponctions peut se justifier par :

- Le développement des sources locales d'énergie telles que les énergies renouvelables ;
- Le renforcement de l'efficacité énergétique considérée comme gisement « virtuel » d'énergie.
 Les actions ayant trait à l'efficacité énergétique sont aussi des actions relevant du développement socio-économique du pays ; et
- L'intensification de la recherche pétrolière et la valorisation de nos réserves en schistes bitumineux.
- Le développement de l'énergie électronucléaire dans notre pays ne devrait pas être exclu de notre paysage énergétique.

De telles actions viendront réduire notre dépendance énergétique vis-à-vis de l'extérieur et surtout participer fortement à l'adéquation entre l'offre et la demande d'énergie dont le véritable corollaire résultant reste et demeure l'assurance d'un approvisionnement sûr et durable de notre pays en énergie à moyen et long terme. Par voie de conséquence, l'analyse prospective de la demande d'énergie à l'horizon 2030 s'avère indispensable.

Alors que la planification énergétique a un horizon à court et moyen terme dans lequel les contraintes sont particulièrement rigides, la prospective énergétique à long terme a pour objet d'identifier les états possibles assez différents de la situation présente qui élargissent les champs décisionnels des agents institutionnels.

La planification énergétique doit ainsi inclure des programmes détaillés d'investissements en fonction d'évaluations réalistes des demandes futures d'énergie : des erreurs sur l'estimation de la demande peuvent avoir en peu d'années des conséquences macroéconomiques importantes sur la croissance et son financement.

B- POURQUOI LE CHOIX DU MODELE MEDEE-Sud?

Prévoir ne signifie nullement deviner l'état futur. En effet, même si nous avons des idées intuitives quant au comportement futur de notre demande d'énergie, ces idées restent encore à démontrer, ce qui présente des difficultés non négligeables.

Il est plutôt question de partir d'un ensemble « d'hypothèses » de prévisions plus ou moins crédibles et vraisemblables afin d'induire le comportement futur de notre système énergétique en harmonie avec de telles « hypothèses ». Une panoplie de scénarios de demande verra ainsi le jour. La confrontation des « hypothèses » de départ avec les résultats de demande qui en découlent permettra tout de même au décideur de juger de la fiabilité de telles « hypothèses », ainsi que de la possibilité de la mise en œuvre d'un scénario de demande adéquat à adopter.

Le décideur devient ainsi en mesure de prendre la décision qu'il faut en matière de demande énergétique prévisionnelle, de déduire l'offre d'énergie correspondante, et par suite d'engager les actions nécessaires à la mise en œuvre de la stratégie énergétique qui en découle tout en restant dans les limites de la politique énergétique bien définie et engagée auparavant.

Il s'agit, en tout état de cause, et en matière de prévision de la demande d'énergie à moyen et long terme, d'apporter au décideur les éclairages adéquats capables de bien permettre à ce dernier de juger de la valeur de sa politique économique en matière d'énergie ainsi que du comportement du secteur énergétique devant servir à l'assouvissement des appétits de notre économie en matière d'énergie.

Bref, en termes de demande d'énergie à moyen et long terme, la simulation de la politique économique sectorielle retenue par nos pouvoirs publics demeure le véritable socle de toute action de prospective énergétique.

Toutefois, les méthodes de prévision de demande d'énergie aux deux horizons considérés ont fortement évolué avec le temps. A ce propos, nous énumérons dans ce qui suit, selon les objectifs visés et dans l'ordre croissant de précision et de rigueur, les principales parmi elles à savoir :

Méthode fixant des performances énergétiques à priori :

Une telle méthode consiste à se fixer une performance à priori comme la **demande d'énergie par habitant** ou **l'intensité énergétique** espérées à l'avance. En jouant sur les projections de la démographie ou du produit intérieur brut, on déduit la demande prévisionnelle d'énergie aux horizons escomptés. Par exemple, quelle serait notre demande d'énergie en 2030 si nous admettons que notre demande d'énergie par habitant au même horizon sera égale à la moyenne mondiale d'aujourd'hui ? Ou bien, quelle serait la même demande si nous espérons une intensité énergétique en 2050 équivalente à celle de la France d'aujourd'hui ?

Il est également possible de se fixer une élasticité **Demande d'énergie/Produit Intérieur Brut** en épousant l'itinéraire économique d'un pays donné ayant assuré son développement économique selon la même élasticité il y'a 25 années par exemple.

Bref, une telle méthode est d'application assez simple mais elle se trouve basée sur des vœux qui restent en général difficilement maîtrisables. En effet, si on fixe d'avance la demande d'énergie par

habitant au cours de la période de prévision, et sachant que la croissance démographique a été bien arrêtée au cours de la même période, la demande globale d'énergie qui en découle, et qui n' est que le produit (Demande d'énergie par habitant)*(Population totale), sera ainsi déduite sans correspondre exactement à la croissance économique adoptée au préalable : cette demande sera ainsi calculée soit par défaut soit par excès selon la demande d'énergie par habitant ayant été fixée avant toute simulation de la demande d'énergie nécessaire à la satisfaction des besoins énergétiques des divers opérateurs socio-économiques. Le même raisonnement peut être retenu pour le cas de la fixation à priori de l'intensité énergétique.

2) Méthode d'extrapolation simple du passé :

L'idée consiste à observer la tendance passée de la consommation d'un produit énergétique pendant quelques dernières années (6 à 15 années par exemple) et d'appliquer le même taux d'évolution observé à la période de prévision considérée tout en procédant à quelques ajustements selon des idées assez grossières sur le comportement futur de notre économie. Le choix de la période de calcul du taux d'évolution historique à appliquer pour l'évaluation des perspectives futures de la demande d'énergie demeure toutefois une grande question sachant que tout le futur sera basé sur une telle période.

S'il est vrai qu'une telle méthode est d'une application assez simple dans la mesure où les données nécessaires sont en général disponibles, il ne demeure pas moins vrai que la même méthode n'est pas dans la capacité de prendre en considération les phénomènes nouveaux venant se greffer aux tendances historiques de base. A ne citer que l'exemple de l'électrification rurale, développée par notre pays et n'ayant connu son véritable essor qu'à compter de l'année 1995. De même, un rythme assez accéléré de notre croissance économique venant rompre avec les tendances passées ne peut être évalué par le biais de la méthode en question.

3) Méthodes de corrélations économiques :

Ces méthodes, beaucoup plus avancées que celles qui viennent d'être énumérées, s'acharnent à élucider statistiquement une corrélation entre la demande d'un produit énergétique et quelques agrégats socioéconomiques tels que le produit intérieur brut, le prix du produit énergétique en question et la population.

Une telle approche, beaucoup plus fine que la simple extrapolation, présente l'avantage d'une application assez pratique en ce sens que les données requises sont en général disponibles d'une part, et que les « logiciels « d'exploitation des mêmes données sont plutôt d'une utilisation moins contraignante. Toutefois, la méthode en question ne peut inclure des décisions quant à l'implantation future et volontariste d'équipements consommateurs d'énergie dont les conséquences en termes de demande d'énergie sortent du cadre de la conservation des tendances passées, notamment quant il s'agit de modifier la structure de notre PIB en tentant par exemple d'encourager le secteur des services au détriment de l'industrie lourde, action venant perturber la précision des paramètres de corrélation. L'installation future d'une usine sidérurgique ou les actions destinées à lutter contre la déforestation de notre pays sont bel et bien des exemples dont l'intégration échappe aux méthodes de corrélations économiques en question.

Là aussi, le choix de la période historique servant de base à la détermination des paramètres de corrélation reste d'ordre aléatoire dans la mesure où nous sommes appelés à procéder à des ajustements relatifs au choix de ces derniers.

Au total, le scénario de demande d'énergie à long terme basée sur la sauvegarde des tendances passées ne peut être considéré que comme un scénario de référence auquel d'autres scénarios possibles et vraisemblables doivent être comparés. Notons à cet égard que la demande énergétique sectorielle par usage énergétique à l'échelle de notre pays ne peut faire partie d'un tel scénario de référence à cause même du manque de disponibilité des données énergétiques sectorielles requises.

Force est donc de constater que les méthodes d'extrapolation des tendances passées ci-dessus énumérées conservant les tendances passées selon la relation (hier/aujourd'hui) = (aujourd'hui/demain) ne nous permettent pas de simuler la demande d'énergie par secteur économique et par usage énergétique. Au lieu de tenter de construire notre devenir, de telles méthodes nous forcent plutôt à subir notre futur.

En définitive, l'approche systémique volontariste inhérente à l'analyse prospective de la demande d'énergie à long terme par secteur et par usage s'avère d'une forte utilité: Une telle prospective nous permettra de mieux orienter, suivre et évaluer notre politique énergétique dont les principaux objectifs ont été définis ci-dessus.

4) Méthodes traduites par l'approche systémique :

Répondre aux besoins futurs en énergie des divers opérateurs socio-économiques de notre pays reviendrait à bien maîtriser leurs niveaux d'activité future. A cet effet, l'approche systémique mettant en exergue le comportement futur du secteur énergétique fonction lui-même de l'évolution des autres secteurs économiques requiert une attitude volontariste dépassant, de loin et en quelque sorte, la sauvegarde des tendances passées de la demande énergétique sous toutes ses formes.

Il s'agit, en tout état de cause, d'explorer le futur en menant à bien la définition d'une année de base constituée de données énergétiques et socio-économiques les plus fiables. Les enquêtes de consommations énergétiques sectorielles par usage énergétique se montrent d'une nécessité absolue : toute l'analyse prospective à long terme basée sur l'approche systémique sera ainsi basée sur l'année de base en question.

En outre, il est bien entendu nécessaire de disposer de scénarios de croissance démographique, de scénarios de croissance économique ainsi que de scénarios énergétiques. D'autres « hypothèses crédibles » comme la lutte contre la déforestation de notre pays venant mieux cerner nos politiques économique et énergétique ne peuvent être que les bienvenues, et ce dans le but de mieux fiabiliser nos résultats de demande énergétique.

Aussi, tout revient à évaluer les perspectives de demande énergétique à moyen et long terme en se basant à la fois sur l'année de base en question ainsi que sur l'environnement socio-économique et énergétique du royaume. Cette méthode est qualifiée de volontariste.

Le modèle MEDEE-Sud (Modèle de Demande en Energie dans les Pays du Sud) répond bien à une telle approche. Ce modèle technico-économique de type comptable et à géométrie variable, et donc applicable quelle que soit la configuration de l'économie du pays considéré, à été généré par le modèle MEDEE. Ce dernier a été exploité par les pays du nord disposant d'un plus large spectre d'informations particulièrement énergétiques que les pays du sud. C'est dire combien le modèle MEDEE-Sud est lui même exigeant en données notamment énergétiques!

Au total, l'analyse prospective de la demande d'énergie à l'horizon 2030 par secteur économique et par usage énergétique ici présente a donc été assurée par le biais du modèle MEDEE-Sud en question tout en arrêtant la configuration qu'il faut pour notre pays en fonction des données disponibles à ce sujet.

In fine, il nous appartient de participer à la construction d'un devenir économique prospère et assez lointain tout en assurant une transition à moyen terme à la fois économique et énergétique. Une telle transition devrait nous autoriser à apporter des modifications assez appréciables quant à nos mentalités de production de biens et services économiques, et par là à notre manière de nous comporter face à nos besoins énergétiques.

C-CONCEPTION MATHEMATIQUE DU MODELE MEDEE-Sud

Comme nous l'avons déjà spécifié auparavant, la simulation de la demande d'énergie à l'horizon 2030 revient à évaluer les besoins en énergie des divers opérateurs socio-économiques selon leurs niveaux d'activités et leurs appétits énergétiques. Ce qui revient à évaluer les besoins en énergie requis par tout secteur économique usage par usage.

Si nous considérons l'exemple du ciment, sa demande d'énergie peut s'exprimer selon la relation traduite par :

$$E = P*Cu \qquad (1) \qquad \text{où}$$

- E est la demande d'énergie dans le ciment;
- P est la production du ciment;
- Cu la consommation d'énergie unitaire dans le ciment.

L'équation (1) peut aussi s'écrire :

$$(\Delta E/E) = (\Delta P/P) + (\Delta Cu/Cu) + (\Delta P/P)*(\Delta Cu/Cu)$$
 où,

- ΔE/E est le taux d'évolution de la demande d'énergie E ;
- ΔP/P est le taux d'évolution de la production P; et
- ΔCu/Cu celui de la consommation d'énergie unitaire dans le ciment.

Le terme $(\Delta P/P)^*(\Delta Cu/Cu)$ étant de deuxième ordre et donc est négligeable, on peut ainsi retenir la relation suivante :

$$(\Delta E/E) = (\Delta P/P) + (\Delta Cu/Cu)$$
 (2)

Ce qui montre que le taux d'évolution de la demande d'énergie dans le ciment est fonction à la fois de ceux de sa production et de sa consommation d'énergie unitaire.

Tandis que le taux d'évolution de la production du ciment est déterminé par le scénario de croissance démographique ou économique retenu, le taux d'évolution de la consommation d'énergie unitaire est, quant à lui, généré par le scénario énergétique adopté.

En corollaire, la variation de la demande d'énergie dans le ciment est fonction du scénario de croissance démographique ou économique et du scénario énergétique, tous les trois délimités initialement et avant toute simulation.

Le même raisonnement est généralisé à tous les usages énergétiques régissant l'ensemble des secteurs économiques tels le secteur des transports, le secteur résidentiel, le secteur de l'agriculture, le secteur du tertiaire et le secteur de l'industrie (non compris le secteur énergétique dont la demande d'énergie sera déduite au niveau de la programmation de l'offre d'énergie).

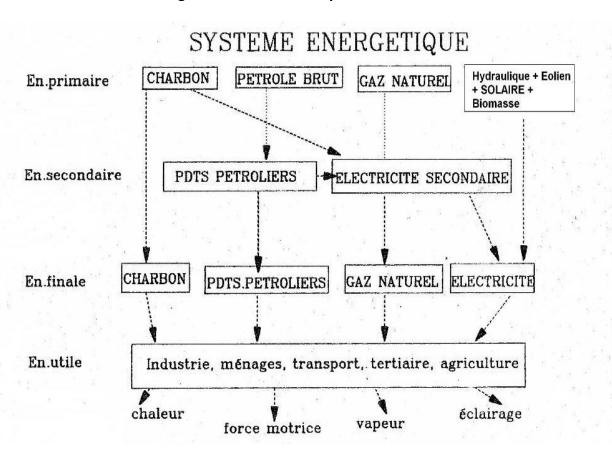
E- ELABORATION DU BILAN ENERGETIQUE ET DES COMPTES ENERGETIQUES SECTORIELS

L'objectif global et stratégique de la simulation de la demande énergétique à l'horizon 2030 ici présente consiste à projeter la situation énergétique relative à l'année de base 2000 dans le principal souci d'induire l'évolution des déterminants énergétiques relatifs au même horizon. A cette fin, nous devons disposer, en plus du bilan énergétique national donnant une image à la fois assez correcte et significative du déroulement des activités énergétiques inhérentes à la même année de base, de comptes énergétiques sectoriels de la même année décrivant, à leur tour, et dans le plus de détails possibles, le comportement en matière de consommation d'énergie par usage de l'ensemble des secteurs économiques de notre pays.

Ce bilan énergétique ainsi que ces comptes énergétiques sectoriels de base doivent être exprimés selon une équivalence énergétique commune permettant une assez nette harmonisation calorifique entre les diverses formes d'énergie mises en jeu.

I) BILAN ENERGETIQUE RELATIF A L'ANNEE DE BASE 2000 :

Le système énergétique tel que présenté ci-contre doit être traduit par des flux énergétiques exprimés selon trois types d'énergie à savoir :


- L'énergie primaire qui n'est autre que l'énergie obtenue à l'extraction ou suite à quelques légères modifications après celle-ci, nous citons à ce propos le cas du pétrole brut, du charbon, du gaz naturel, de l'électricité hydraulique, de l'électricité éolienne, de l'électricité solaire, de l'électricité à base de biomasse, de l'énergie nucléaires et des énergies traditionnelles;
- L'énergie secondaire obtenue suite à la transformation de l'énergie primaire ou même secondaire. Nous citons à ce propos le cas des produits pétroliers finis obtenus après le raffinage du pétrole brut, l'électricité thermique générée par des centrales thermiques consommant de l'énergie primaire ou de l'énergie secondaire telles que le charbon, le fueloil, le gaz naturel et le gasoil.

- L'énergie finale qui, cette fois-ci, se traduit par l'énergie consommée par l'utilisateur final assurant une ou plusieurs activités économiques.
- L'énergie utile qui est en définitive l'énergie réellement utilisée à des fins d'éclairage, de chaleur, de vapeur et de force motrice. A ce propos nous citons l'exemple de la cuisinière à butane qui ne nous fournit que 35 % d'énergie utile alors que les 65 % restants du butane brûlé et considéré comme énergie finale partent dans l'atmosphère sous forme de pertes. L'énergie utile se déduit ainsi de l'énergie finale par le biais du rendement de l'équipement utilisateur de l'énergie finale selon la formule suivante :

Energie utile = (Rendement de l'équipement utilisateur) * (Energie finale utilisée Par le même équipement)

Le rendement en question doit être évalué selon des mesures empiriques portant sur de longues périodes et ne doit en aucun cas être confondu avec celui fourni par le constructeur.

Malgré que la véritable efficacité énergétique d'un système économique consommateur d'énergie ne peut être évaluée que par la demande en énergie utile mise en jeu, nous n'aborderons pas ce type d'énergie au niveau de la présente réflexion pour la simple raison que nous ne disposons pas de données fiables quant aux rendements des équipements consommateurs d'énergie inhérents à un tel système.

Les flux énergétiques décrivant le processus de l'approvisionnement de notre économie en énergie doivent refléter le véritable acheminement des formes d'énergie en partant de l'énergie primaire pour aboutir à l'énergie finale. Ces flux s'articulent comme suit :

- La production locale d'énergie primaire ;
- Les importations de l'énergie primaire ou de l'énergie secondaire ;
- Les exportations d'énergie primaire ou d'énergie secondaire ;
- Les variations des stocks d'énergie primaire ou secondaire ;
- L'énergie disponible qui s'obtient par la somme algébrique des quatre précédentes rubriques.
 C'est au fait cette énergie disponible qui nous permettra d'approvisionner à la fois le secteur énergétique et les autres secteurs économiques;
- Les transformations d'énergie portant, pour notre cas, sur le raffinage du pétrole brut ainsi que sur la génération de l'énergie électrique;
- La consommation d'énergie finale obtenue par les déclarations des utilisateurs finaux de l'énergie. Ladite consommation est souvent très approchée à cause de la non complète performance des outils de mesure : et enfin ;
- Les pertes et fermetures qui permettent à la fin d'équilibrer le bilan offre-demande d'énergie ainsi défini. Cette rubrique permet finalement d'absorber toutes les incertitudes commises et reflétées suite à la comptabilisation des autres rubriques composant le bilan.

La configuration du bilan énergétique composé par l'offre d'énergie et la demande d'énergie finale par secteur économique se présente comme ci-après :

BILAN ENERGETIQUE DE L'ANNEE 2006 (Selon la nomenclature AIE) (A titre indicatif)

					Electricité p	rimaire		Sous		
	CHARBON	GAZ	Pé	trole				Total	Energies	TOTAL
		NATUREL	Pét brut	Pdts pétroliers	Hydraulique	Eolien	Secondaire		Traditionn.	ENERGIE
Production		56	10		85	16		166	2 940	3 106
Importations	3 878	423	6 402	3 026			174	13 903		13 903
Exportations				1 127				1 127		1 127
Soutes maritimes (*)								0		0
Variation des stocks	14		-142	372			-11	233		233
Energie disponible	3 892	479	6 270	2 271	85	16	163	13 176	2 940	16 116
Raffinage			-6 270	5 980				-290		-290
Production d'électricité	-3 305	-423		-725	-85	-16	1 676	-2 877		-2 877
Pertes et fermetures	39			104			-183	-41		-41
Consom énergie finale	626	56		7 630			1 656	9 968	2 940	12 908
Agriculture				953			84	1 037		1 037
Industrie	626	56		1 381			615	2 678		2 678
Transport				3 005			82	3 087		3 087
Tertiaire				323			302	625	440	1 065
Résidentiel				1 665			573	2 238	2 500	4 738
Usages non énergétiques				303				303		303

(*) Non disponible

II) COEFFICIENTS D'EQUIVALENCE ENERGETIQUE:

Nous avons bien remarqué que les flux énergétiques mis en question dans l'élaboration d'un bilan énergétique partent d'un enchaînement logique qui procède à des additions algébriques des postes composant ledit bilan. Cependant, même si cette addition est valable pour une forme d'énergie bien déterminée, elle ne le restera pas quant il s'agit d'additionner une forme d'énergie à une autre forme lui étant différente par nature. Il serait illusoire, en effet, d'ajouter une tonne de butane à une tonne de charbon en ce sens que les deux tonnes relatives aux deux produits, même s'ils sont tous les deux énergétiques, ne sont pas de même nature et ne renferment pas le même nombre de calories.

Il serait donc prudent de faire appel à une unité énergétique de référence devant être commune à toutes les formes d'énergie, unité selon laquelle nous exprimons tous les flux énergétiques, qu'ils soient verticaux ou horizontaux dans l'objectif de comparer des objets bien comparables. Le but ultime étant d'être en mesure d'évaluer les pertes ainsi que les rendements relatifs à notre système énergétique qui s'obtiennent à l'aide des flux verticaux et horizontaux du bilan en question. L'unité de mesure commune considérée dans cette étude est la Tonne de pétrole brut, ce qui nous permet d'adopter, en Tonne équivalent pétrole, les équivalences énergétiques en terme de pouvoir calorifique retenues par l'AIE-OCDE et qui se présentent comme ci-après :

1 Tonne équivalent pétrole = 10 10 calories

1 TONNE DE PRODUIT	EQUIVALENCE	DENSITE
	ENERGETIQUE	
	(En Tep)	
GPL	1,13	-
Essences	1,07	0,739
Pétrole lampant	1,045	0,792
Carburéacteur	1,065	0,786
Gas oil	1,035	0,832
Fuel oil	0,96	-
Charbon importé (*)	0,66	-
Charbon local (*)	0,56	-
Schistes de Timahdite (*)	0,14	-

^(*) Equivalence retenue par le Ministère de l'Energie et des Mines.

Parallèlement à ces formes d'énergie, nous retenons pour le gaz naturel :

1000 N m³= 1Tep pour le gaz naturel importé et 0,76 Tep pour le gaz naturel local.

S'agissant de l'équivalence énergétique relative à l'électricité, il convient de rappeler que nous devons intervenir à la fois au niveau de l'électricité primaire et de l'électricité secondaire. Sur ce plan, il s'agit d'opter soit pour l'équivalence à la production, soit pour l'équivalence à la consommation.

En effet, il serait logique de convertir l'électricité primaire selon l'équivalence à la production et l'électricité à l'usage final selon l'équivalence à la consommation. Ce qui nous importe le plus, cependant, dans le cas présent est plutôt l'équivalence à la consommation, puisque nous sommes tentés, en première étape, d'évaluer la demande finale d'électricité par secteur à l'horizon escompté.

L'équivalence à la production s'obtient ainsi en se referant au rendement de la centrale thermique étalon, jugée la plus rentable de l'année 1970. Une telle centrale nous permet d'observer la quantité de 222 Tep comme équivalent à la production d'un Gwh. Soit alors un rendement de 38 % environ. Cependant, afin de bien recouvrer notre bilan énergétique, il est préférable de se rapporter au rendement moyen de nos centrales thermiques à l'année considérée.

Quant à l'équivalence à la consommation, elle s'obtient aisément en convertissant le Gwh consommé en calories, ce qui donne l'équivalent pour un Gwh de 86,1 Tep.

Abstraction faite de toute forme de conversion électrique retenue, ce qui nous importe le plus étant d'évaluer la demande d'électricité en Gwh afin de déduire les quantités d'électricité primaire et les quantités de combustibles à mettre en compétition afin de générer la demande d'électricité en question.

III) COMPTES ENERGETIQUES SECTORIELS :

Relativement à chaque secteur économique, nous procédons à l'évaluation d'un compte énergétique sectoriel dont le principal but est de cerner la consommation énergétique par usage relevant du même secteur, et ce relativement à l'année de base 2000. Ce sont ces comptes énergétiques sectoriels, jumelés avec les indicateurs sectoriels décrivant l'activité à l'horizon 2030 des secteurs économiques en questions qui vont nous permettre d'induire la demande en énergie finale par secteur au même horizon. Vraisemblablement, les indicateurs sectoriels en question n'échappent pas à leurs liens étroits avec les scénarii socio-économiques décrits précédemment. Ces indicateurs sont définis pour chaque secteur économique.

IV) ESTIMATION DU BILAN ENERGETIQUE ET DES COMPTES ENERGETIQUES SECTORIELS RELATIFS A L'ANNEE DE BASE 2000 :

Les consommations énergétiques sectorielles, servant de base pour la constitution du bilan énergétique relatif à l'année de base 2000, ainsi que pour les comptes énergétiques sectoriels y afférents, se présentent comme éléments fondamentaux requis par le modèle MEDEE-Sud.

Faute de disposer d'enquêtes de consommations énergétiques sectorielles récentes, nous avons jugé opportun, voire nécessaire de procéder à l'estimation de tels déterminants. Ces estimations ont eu comme base de départ les données historiques déjà existantes et ont été soumises au respect de quelques indicateurs énergétiques et quelquefois socio-économiques observés dans le passé telles que les consommations unitaires, les intensités énergétique et les élasticités de la demande énergétique d'un sous-secteur donné relativement à sa valeur ajoutée...L'année 2000 a été choisie comme année de base vu la prépondérance en données énergétiques et socio-économiques qu'elle est capable de recouper.

Il est tout de même assez délicat de rassembler toutes ces données énergétiques requises pour la même année, et c'est ainsi qu'un travail de planification ne peut jamais arriver à terme sans la présence de multiples estimations. C'est dans cet ordre d'idée que le planificateur doit avant tout

disposer d'un sens assez décisif vis-à-vis des données qu'il manipule. De telles estimations devraient être justifiées au niveau des résultats de demandes énergétiques sectorielles ainsi qu'à l'échelle de la demande globale d'énergie à l'horizon 2030; en soumettant lesdits résultats à des tests tenant à respecter l'évolution des indicateurs cités ci haut et permettant de maîtriser notre devenir en s'assurant des rythmes d'évolution des tendances passées.

COEFFICIENTS D'EQUIVALENCE ENERGETIQUE RETENUS PAR l'AIE:

(A compter de l'année 2008)

1 Tonne équivalent pétrole = 10 10 calories = 41,868 GJ

	Coefficient d'équivalence	Coefficient d'équivalence	
Produit énergétique	En Tep	En GJ	
Produits pétroliers: 1 Tonne			
Ethane	1,135	47,5	
Propane	1,107	46,3	
Butane	1,092	45,7	
Naphta	1,083	45,3	
Essence aviation	1,076	45,0	
Essence moteur (*)	1,069	44,8	
Carburéacteur	1,049	43,9	
Pétrole lampant	1,049	43,9	
Gas oil	1,036	43,4	
Fuel oil à faible teneur en soufre	1,007	42,2	
Fuel oil à haute teneur en soufre	0,993	41,6	
Charbon: 1 Tonne			
Anthracite	0,708	29,7	
Charbon à coke	0,674	28,2	
Autre bitumeux	0,574	24,1	
Cokes: 1 Tonne			
Coke métallurgique	0,656	27,5	
Coke de gaz	0,667	27,9	
Semi-coke	0,607	25,4	
Coke de pétrole	0,780	32,7	
Gaz dérivés du charbon: 1 Tonne			
Gaz de four à coke	0,404	16,9	
Gaz de haut fourneau	0,069	2,9	

	Coefficient d'équivalence	Coefficient d'équivalence	
Produit énergétique	En Tep	En GJ	
Gaz naturel (PCI):			
(Mètre cube à 15°C)			
GNL	0,955	40,0	
Gaz:			
Norvège	1,015	42,5	
Pays Bas	0,846	35,4	
Russie	0,904	37,8	
Algérie	0,936	39,2	
Electricité primaire: 1 Gwh			
Hydraulique	86	3 600	
Eolien	86	3 600	
Photovoltaïque	86	3 600	
Electricité nucléaire	260	10 884	
Electricité importée	86	3 600	
Electricité géothermique	8,6	360	
Electricité thermo solaire	86	3 600	
Electricité marémotrice	86	3 600	
Bois et charbon de bois: 1 Tonne			
Bois de feu	0,358	15	
Charbon de bois	0,717	30	

^(*) Une moyenne pour les essences motrices à indice d'octane compris entre 91 et 95 $\,$

BIBLIOGRAPHIE

STRATEGIE ENERGETIQUE NATIONALE du 31 Mai 2011

INTERNET:

- ENERDATA
- Haut-Commissariat au Plan
- Office National de l'Electricité
- Agence Internationale de l'Energie

RAPPORTS DE L'OBSERVATOIRE FRANÇAIS DE L'ENERGIE

RAPPORTS D'ACTIVITE DE L'OFFICE NATIONALE DE L'ELECTRICITE

RAPPORTS D'ACTIVITE DU SECTEUR PETROLIER

PRODUITS PETROLIERS EN CHIFFRES

ANNUAIRES STATISTIQUES

ENQUETES SUR LES DEPENSES DES MENAGES 2000-2001

ENQUETES 2000 SUR LES TRANSPORTS

RAPPORT DU DERNIER CINQUANTENAIRE ET PERSPECTIVES 2025

JUMELAGE DOP -UE (de Juin 2011 à juin 2013)

AUTRES...

RESULTATS GENERAUX

DONNEES DEMOGRAPHIQUES ET MACROECONOMIQUES:

I) SCENARIO DE CROISSANCE DEMOGRAPHIQUE:

-Croissance démographique (En %):

2000-2006	2006-2012	2012-2020	2020-2025	2025-2030	2006-2030
0,96	1,07	0,96	0,79	0,79	0,92

-Population par milieu (En 10³ Habitants)

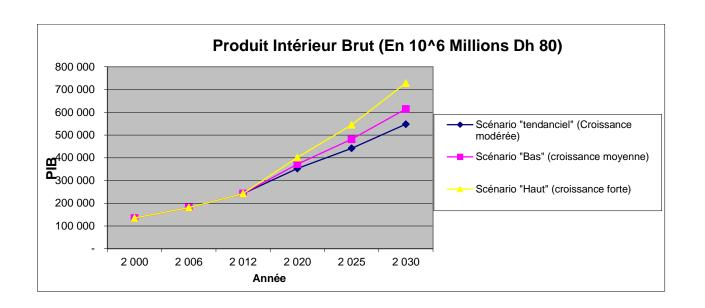
							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Taux d'urbanisation (En %)	55	56	59	62	62	64	
Milieu Urbain	15 940	17 079	19 185	21 762	22 636	24 303	1,48%
Milieu rural	12 865	13 427	13 332	13 338	13 873	13 671	0,07%
Population totale	28 805	30 506	32 518	35 101	36 509	37 974	0,92%

-Nombre de personnes par ménage

	2000	2006	2012	2020	2025	2030
Milieu Urbain	4,9	4,6	4,3	3,9	3,6	3,6
Milieu rural	6,7	5,9	5,6	5,1	4,2	4,2

-Nombre de ménages par milieu (En 10^3)

	2000	2006	2012	2020	2025	2030
Milieu Urbain	3 253	3 713	4 462	5 580	6 288	6 751
Milieu rural	1 920	2 276	2 381	2 615	3 303	3 255
Total ménages	5 173	5 989	6 842	8 195	9 591	10 006


II) SCENARIO DE CROISSANCE ECONOMIQUE:

-Croissance économique (En %):

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence à "caractère tendanciel"					
(Croissance économique modérée)	5	5	4,8	4,6	4,4
Scénario macroéconomique "Bas"					
(Croissance économique moyenne)	5	5	5,5	5,3	5
Scénario macroéconomique "Haut"					
(Croissance économique forte)	5	5	6,5	6,3	6

-Produit intérieur brut (En 10^6 Dh 1980):

	2 000	2 006	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"						
(Croissance économique modérée)	134 900	180 779	242 261	352 512	441 400	547 438
Scénario macroéconomique "Bas"						
(Croissance économique moyenne)	134 900	180 779	242 261	371 795	481 332	614 316
Scénario macroéconomique "Haut"						
(Croissance économique forte)	134 900	180 779	242 261	400 941	544 185	728 243

Scénario économique "Bas":

Valeurs ajoutées par secteurs économique (En 10^6 Dh):

	2000	2012	2020	2030
Agriculture (y compris pêche)	15 377	33 917	44 615	67 575
Industrie (Y compris BTP)	41 580	72 678	118 974	208 867
Services (Transport + Tertiaire)	77 943	135 666	208 205	337 874
PIB total	134 900	242 261	371 795	614 316

Scénario économique "Haut":

Valeurs ajoutées par secteurs économique (En 10^6 Dh):

(10⁶ Dh 1980)

	2000	2012	2020	2030
Agriculture (y compris pêche)	15 377	33 917	48 113	80 107
Industrie (Y compris BTP)	41 580	72 678	128 301	247 602
Services (Transport + Tertiaire)	77 943	135 666	224 527	400 533
PIB total	134 900	242 261	400 941	728 243

Demande d'énergie primaire selon les coefficients d'équivalence énergétique retenus par le Département de l'Energie et des Mines

Option 1 : Avec développement du gaz naturel sans développement de l'énergie nucléaire et des schistes bitumineux

PARTIE I: DEMANDE D'ENERGIE PRIMAIRE CONVENTIONNELLE A L'HORIZON 2030:

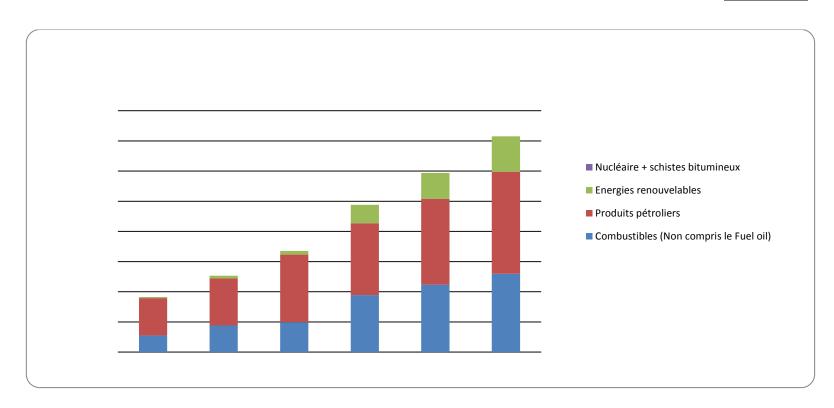
(Sans efficacité énergétique)
(Energies traditionnelles non comprises)

A) DEMANDE D'ENERGIE PRIMAIRE SANS EFFICACITE ENERGETIQUE (En 1000 Tep):

1) Scénario de "référence à caractère tendanciel"

"Laisser Faire":

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
TOTAL COMBUSTIBLES	4 173	6 137	7 706	10 426	12 188	13 754	
-		6,6%	3,9%	3,9%	3,2%	2,4%	3,4%
-Total fuel oil	1 451	1 727	2 745	970	1 030	790	
fuel oil électricité	610	750	1 610	140	140	90	
fuel oil industrie	841	977	1 135	830	890	700	
-Total charbon	2 684	3 931	4 091	3 456	4 158	2 964	
charbon électricité	2 122	3 305	3 156	3 156	3 548	2 064	
charbonl industrie	562	626	935	300	610	900	
-Total gaz naturel	38	479	870	6 000	7 000	10 000	
gaz naturel électricité	-	423	800	3 500	4 500	7 000	
gaz naturel industrie (**)	38	56	70	2 500	2 500	3 000	


TOTAL PRODUITS PETROLIERS							
(*)	4 756	6 070	8 456	10 932	13 235	16 130	
(Fuel oil non compris)		4,1%	5,7%	3,3%	3,9%	4,0%	4,2%
Propago	90	163	160	287	335	380	
-Propane	90	103	-0.3%	7.6%	3.1%	2,6%	3,6%
-Butane	1 037	1 453	1 985	3 200	4 150	5 600	3,076
2 3.3.70		5,8%	5,3%	6,2%	5,3%	6,2%	5,8%
-Essences	404	388	575,28	503	528	550	,,,,,,,
		-0,7%	6,8%	-1,7%	1,0%	0,8%	1,5%
-Carburéacteur	285	416	564,126	942	1 222	1 500	
		6,5%	5,2%	6,6%	5,3%	4,2%	5,5%
-Gas oil	2 840	3 550	5 072	6 000	7 000	8 100	
		3,8%	6,1%	2,1%	3,1%	3,0%	3,5%
Shistes bitumineux							
Energies renouvelables :	202	460	605	3 045	4 247	5 864	11,2%
-Electricité solaire				1 000	1 300	1 467	
-Electricité hydraulique	185	412	484	400	350	300	
-Electricité éolienne	17	48	121	1 500	2 387	3 816	
-Electricité biomassique				145	210	281	
-Electricité importée	614	527	1 014	-	-	-	
Electricité nucléaire							
TOTAL ENERGIE PRIMAIRE	9 745	13 194	17 781	24 538	29 805	35 883	4,3%
		5,2%	5,1%	5,5%	3,3%	3,1%	

^(*) Y compris consommation en produits énergétiques de la SAMIR de 100 000 Tep entre 2000 et 2012

^(**) Y compris consommation des raffineries en gaz naturel de 2 Milliards N m3 entre 2020 et 2030

a) En 1 000 Tep:

								Evolution
		2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Co Scénario "Bas Laisser Faire")	2 722	4 410	4 961	9 456	11 158	12 964	4,6%
Pr		6 207	7 797	11 201	11 902	14 265	16 920	3,3%
Energies renouvelables		202	460	605	3 045	4 247	5 864	11,2%
Electricité importée		614	527	1 014	-	-	-	
Nucléaire + Schistes bitumineux		-	-	-	-	-	-	
Total énergie primaire		9 745	13 194	17 781	24 403	29 670	35 748	4,2%

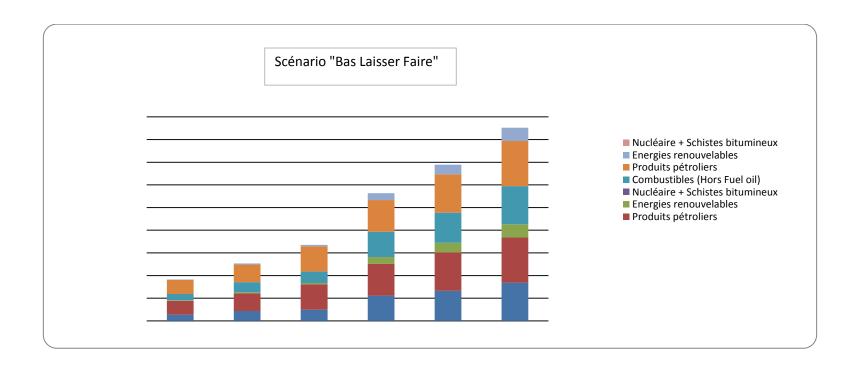
<u>a) En % :</u>

	2 000	2 006	2 012	2 020	2 025	2 030
Combustibles (Fuel oil non compris)	28	33	28	39	38	36
Produits pétroliers	64	59	63	49	48	47
Energies renouvelables	2	3	3	12	14	16
Electricité importée	6	4	6	1	-	1
Nucléaire + Schistes bitumineux		-	-	-	-	-
Total énergie primaire	100	100	100	100	100	100

2) Scénario "Bas Laisser Faire":

_							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
TOTAL COMBUSTIBLES	4 173	6 137	7 706	12 463	14 409	17 555	
		6,6%	3,9%	6,2%	2,9%	4,0%	4,5%
-Total fuel oil	1 451	1 727	2 745	1 330	1 140	700	
fuel oil électricité	610	750	1 610	150	150	100	
fuel oil industrie	841	977	1 135	1 180	990	600	
-Total charbon	2 684	3 931	4 091	5 133	6 269	6 855	
charbon électricité	2 122	3 305	3 156	4 313	5 659	5 945	
charbonl industrie	562	626	935	820	610	910	
-Total gaz naturel	38	479	870	6 000	7 000	10 000	
gaz naturel électricité	-	423	800	3 500	4 500	7 000	
gaz naturel industrie (**)	38	56	70	2 500	2 500	3 000	
TOTAL PRODUITS PETROLIERS (*)	4 756	6 070	8 456	12 668	15 815	19 203	
(Fuel oil non compris)		4,1%	5,7%	5,2%	4,5%	4,0%	4,9%
-Propane	90	163	160	360	440	540	
		10,4%	-0,3%	10,7%	4,1%	4,2%	5,1%
-Butane	1 037	1 453	1 985	3 417	4 710	6 474	
		5,8%	5,3%	7,0%	6,6%	6,6%	6,4%
-Essences	404	388	575,28	530	585	645	
		-0,7%	6,8%	-1,0%	2,0%	2,0%	2,1%

-Carburéacteur	285	416	564,126	960	1260	1 500	
		6,5%	5,2%	6,9%	5,6%	3,5%	5,5%
-Gas oil	2 840	3 550	5 072	7 401	8 820	10 044	
		3,8%	6,1%	4,8%	3,6%	2,6%	4,4%
Shistes bitumineux							
Energies renouvelables :	202	460	605	3 045	4 247	5 864	11,2%
-Electricité solaire				1 000	1 300	1 467	
-Electricité hydraulique	185	412	484	400	350	300	
-Electricité éolienne	17	48	121	1 500	2 387	3 816	
-Electricité biomassique				145	210	281	
-Electricité importée	614	527	1 014	-	-	-	
Electricité nucléaire							
TOTAL ENERGIE PRIMAIRE	9 745	13 194	17 781	28 177	34 471	42 622	5,0%
		5,2%	5,1%	8,0%	3,4%	3,6%	


^(*) Y compris consommation en produits énergétiques de la SAMIR de 100 000 Tep entre 2000 et 2012

-Structure de la demande d'énergie primaire :

a) En 1 000 Tep:

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Combustibles (Fuel oil non compris)	2 722	4 410	4 961	11 133	13 269	16 855	5,7%
Produits pétroliers	6 207	7 797	11 201	13 998	16 955	19 903	4,0%
Energies renouvelables	202	460	605	3 045	4 247	5 864	11,2%
Electricité importée	614	527	1 014	-	-	-	
Nucléaire + Schistes bitumineux	-	-	ı	-	-	ı	
Total énergie primaire	9 745	13 194	17 781	28 177	34 471	42 622	5,0%

^(**) Y compris consommation des raffineries en gaz naturel de 2 Milliards N m3 entre 2020 et 2030

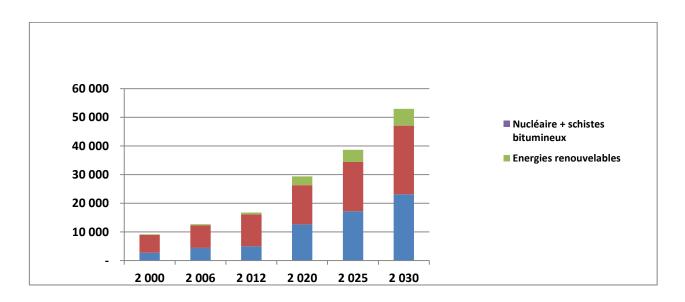
Scénario "Bas Laisser Faire"

<u>a) En % :</u>

	2 000	2 006	2 012	2 020	2 025	2 030
Combustibles (Fuel oil non compris)	28	33	28	40	38	40
Produits pétroliers	64	59	63	50	49	47
Energies renouvelables	2	3	3	11	12	14
Electricité importée	6	4	6	-	-	-
Nucléaire + Schistes bitumineux	-	-	-	-	-	1
Total énergie primaire	100	100	100	100	100	100

3) Scénario "Haut Laisser Faire":

							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
TOTAL COMBUSTIBLES	4 173	6 137	7 706	13 896	18 120	24 246	
		6,6%	3,9%	7,6%	5,5%	6,0%	5,9%
-Total fuel oil	1 451	1 727	2 745	1 290	900	1 120	
fuel oil électricité	610	750	1 610	200	100	120	
fuel oil industrie	841	977	1 135	1 090	800	1 000	
-Total charbon	2 684	3 931	4 091	6 606	10 220	13 126	
charbon électricité	2 122	3 305	3 156	5 746	9 120	11 826	
charbonl industrie	562	626	935	860	1 100	1 300	
-Total gaz naturel	38	479	870	6 000	7 000	10 000	
gaz naturel électricité	-	423	800	3 500	4 500	7 000	
gaz naturel industrie (**)	38	56	70	2 500	2 500	3 000	
TOTAL PRODUITS PETROLIERS (*)	4 756	6 070	8 456	12 438	16 295	22 843	
(Fuel oil non compris)		4,1%	5,7%	4,9%	5,6%	7,0%	5,7%
- -Propane	90	163	160	330	410	500	
- Proparie	90	10,4%	-0,3%	9,5%	4,4%	4,0%	4,8%
-Butane	1 037	1 453	1 985	3 567	5 000	8 124	4,070
Butane	1 007	5,8%	5,3%	7.6%	7.0%	10,2%	7,4%
-Essences	404	388	575,28	580	645	715	7,470
233011003	104	-0,7%	6,8%	0,1%	2,1%	2,1%	2,6%
-Carburéacteur	285	416	564,126	960	1340	1 860	2,070
		6,5%	5,2%	6,9%	6,9%	6,8%	6,4%
-Gas oil	2 840	3 550	5 072	7 001	8 900	11 644	
		3,8%	6,1%	4,1%	4,9%	5,5%	5,1%
Shistes bitumineux						-	
Energies renouvelables :	202	460	605	3 045	4 247	5 864	11,2%
-Electricité solaire				1 000	1 300	1 467	
-Electricité hydraulique	185	412	484	400	350	300	
-Electricité éolienne	17	48	121	1 500	2 387	3 816	
-Electricité biomassique				145	210	281	
-Electricité importée	614	527	1 014	-	-	_	

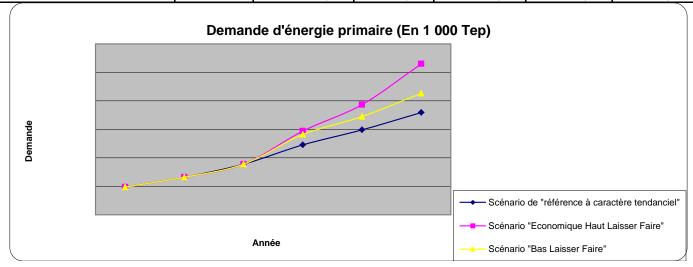

Electricité nucléaire						-	
TOTAL ENERGIE PRIMAIRE	9 745	13 194	17 781	29 380	38 662	52 953	6,0%
		5,2%	5,1%	8,7%	4,7%	5,4%	

^(*) Y compris consommation en produits énergétiques de la SAMIR de 100 000 Tep entre 2000 et 2012

-Structure de la demande d'énergie primaire :

a) En 1 000 Tep:

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Combustibles (Fuel oil non compris)	2 722	4 410	4 961	12 606	17 220	23 126	7,1%
Produits pétroliers	6 207	7 797	11 201	13 728	17 195	23 963	4,8%
Energies renouvelables	202	460	605	3 045	4 247	5 864	11,2%
Electricité importée	614	527	1 014	-	-	-	
Nucléaire + Schistes bitumineux	-	-	-	-	-	-	
Total énergie primaire	9 745	13 194	17 781	29 380	38 662	52 953	6,0%

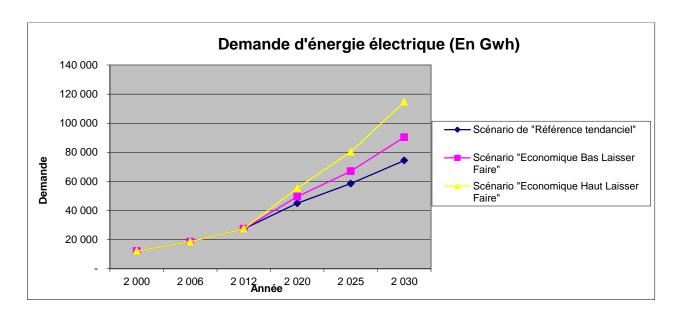

^(**) Y compris consommation des raffineries en gaz naturel de 2 Milliards N m3 entre 2020 et 2030

<u>a) En % :</u>

	2 000	2 006	2 012	2 020	2 025	2 030
Combustibles (Fuel oil non compris)	28	33	28	43	45	44
Produits pétroliers	64	59	63	47	44	45
Energies renouvelables	2	3	3	10	11	11
Electricité importée	6	4	6	1	-	-
Nucléaire + Schistes bitumineux	-	-	1	ı	-	1
Total énergie primaire	100	100	100	100	100	100

4) Recapitulatif de la demande d'énergie primaire par scénario (En 1 000 Tep):

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence	9 745	13 194	17 781	24 538	29 805	35 883	
à "caractère tendancielBLF"		5,2%	5,1%	4,1%	4,0%	3,8%	4,3%
Scénario macroéconomique	9 745	13 194	17 781	28 177	34 471	42 622	
"Bas Laisser Faire"		5,2%	5,1%	5,9%	4,1%	4,3%	5,0%
Scénario macroéconomique	9 745	13 194	17 781	29 380	38 662	52 953	
"Haut Laisser Faire"		5,2%	5,1%	6,5%	5,6%	6,5%	6,0%


B) Activité électrique à l'horizon 2030:

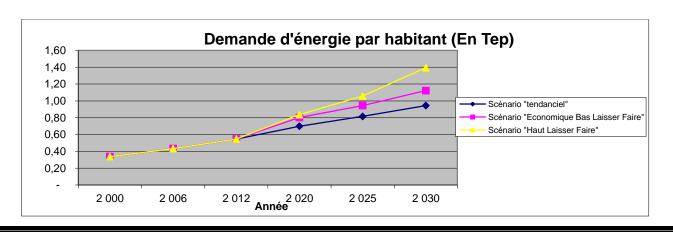
-Demande d'énergie électrique (En GWH):

	2 000	2 006	2 012	2 020	2 025	2 030
Scénario de "référence tendanciel LF"	12 143	18 572	27 410	44 933	58 500	74 394
Scénario macroéconomique "BLF"	12 143	18 572	27 410	49 512	67 010	90 386
Scénario macroéconomique "H L F"	12 143	18 572	27 410	55 316	80 310	114 624

-Evolution de la demande d'énergie électrique (En %):

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence à "caractère tendanciel"	7,3	6,7	6,4	5,4	4,9
Scénario macroéconomique "Bas Laisser Faire"	7,3	6,7	7,7	6,2	6,2
Scénario macroéconomique "Haut Laisser Faire"	7,3	6,7	9,2	7,7	7,4

-Energie électrique nette appelée (En GWH):

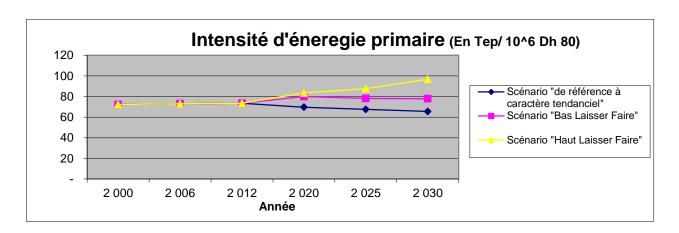

							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Scénario de référence à "caractère tendanciel"	13 957	21 105	30 425	49 426	64 350	81 834	5,8%
Scénario macroéconomique "Bas Laisser Faire"	13 957	21 105	30 425	54 463	73 711	99 425	6,7%
Scénario macroéconomique "Haut Laisser Faire"	13 957	21 105	30 425	60 848	88 341	126 086	7,7%

-Evolution de l'énergie électrique nette appelée (En %):

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence à "caractère tendanciel"	7,1	6,3	6,3	5,4	4,9
Scénario macroéconomique "Bas Laisser Faire"	7,1	6,3	7,5	6,2	6,2
Scénario macroéconomique "Haut Laisser Faire"	7,1	6,3	9,1	7,7	7,4

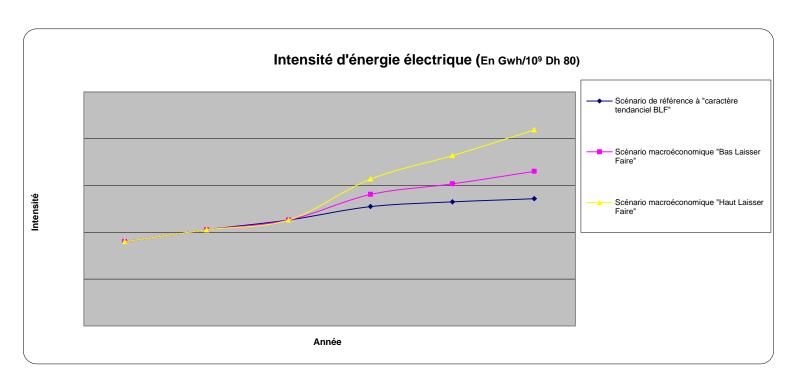
C) Demande d'énergie primaire par habitant (En Tep):

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence à "caractère tendanciel"	0,34	0,43	0,55	0,70	0,82	0,94	3,3%
Scénario macroéconomique "Bas Laisser Faire"	0,34	0,43	0,55	0,80	0,94	1,12	4,1%
Scénario macroéconomique "Haut Laisser Faire"	0,34	0,43	0,55	0,84	1,06	1,39	5,0%


Evolution

D) Demande d'énergie électrique par habitant (En Kwh):

	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de "référence tendanciel LF"	422	609	843	1 280	1 602	1 959	5,0%
Scénario macroéconomique "BLF"	422	609	843	1 411	1 835	2 380	5,8%
Scénario macroéconomique "H L F"	422	609	843	1 576	2 200	3 018	6,9%


E) Intensité d'énergie primaire (En Tep/10^6Dh 80):

	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence à "caractère tendanciel"	72	73	73	70	68	66	-0,4%
Scénario macroéconomique "Bas Laisser Faire"	72	73	73	80	78	78	0,3%
Scénario macroéconomique "Haut Laisser Faire"	72	73	73	83	88	97	1,2%

F) Intensité de la demande électrique (En Gwh/10^9 Dh80):

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence à "caractère tendanciel BLF"	90	103	113	127	133	136	1,2%
Scénario macroéconomique "Bas Laisser Faire"	90	103	113	140	152	165	2,0%
Scénario macroéconomique "Haut Laisser Faire"	90	103	113	157	182	209	3,0%

G) Elasticité de la demande d'énergie primaire par rapport au PIB:

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence "tendanciel LF"	1,04	1,02	1,15	0,72	0,71
Scénario macroéconomique "B L F"	1,04	1,02	1,45	0,64	0,72
Scénario macroéconomique "H L F"	1,04	1,02	1,34	0,74	0,90

H) Elasticité de la demande d'électricité par rapport au PIB:

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence à "caractère tendanciel BLF"	1,47	1,34	1,33	1,18	1,12
Scénario macroéconomique "Bas Laisser Faire"	1,47	1,34	1,39	1,18	1,23
Scénario macroéconomique "Haut Laisser Faire"	1,47	1,34	1,67	1,46	1,47

PARTIEII:

DEMANDE D'ENERGIE PRIMAIRE CONVENTIONNELLE A L'HORIZON 2030:

(Avec efficacité énergétique)

(Energies traditionnelles non comprises)

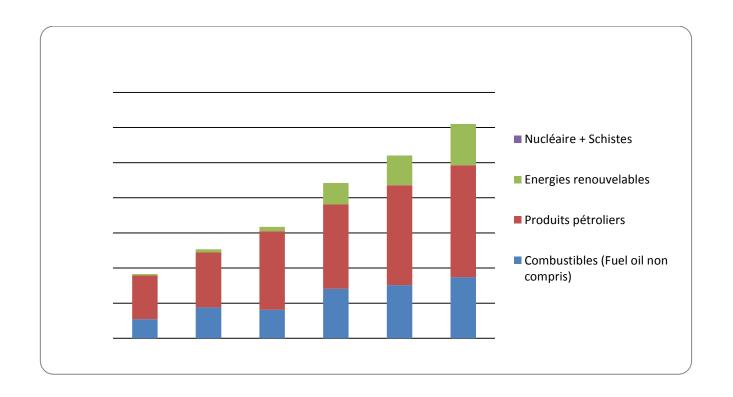
A) DEMANDE D'ENERGIE PRIMAIRE AVEC EFFICACITE ENERGETIQUE (En 1000 Tep):

1) Scénario de "référence à caractère tendanciel" "Maitrise d'Energie":

(Avec efficacité énergétique)

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
TOTAL COMBUSTIBLES	4 173	6 137	6 791	7 921	8 705	9 352	
		6,6%	1,7%	1,9%	1,9%	1,4%	1,8%
-Total fuel oil	1 451	1 727	2 735	890	1 141	655	
fuel oil électricité	610	750	1 600	127	140	95	
fuel oil industrie	841	977	1 135	763	1 001	560	
-Total charbon	2 684	3 931	3 186	1 781	1 614	1 797	
charbon électricité	2 122	3 305	2 251	1 365	1 150	1 101	
charbonl industrie	562	626	935	416	464	696	
-Total gaz naturel	38	479	870	5 250	5 950	6 900	
gaz naturel électricité	-	423	800	2 800	3 500	4 000	
gaz naturel industrie (**)	38	56	70	2 450	2 450	2 900	
TOTAL PRODUITS PETROLIERS (*)	4 756	6 070	8 456	11 127	13 069	15 286	
(Fuel oil non compris)		4,1%	5,7%	3,5%	3,3%	3,2%	3,9%
-Propane	90	163	160	325	380	440	
		10,4%	-0,3%	9,3%	3,2%	3,0%	4,2%
-Butane	1 037	1 453	1 985	3 400	4 284	5 552	
		5,8%	5,3%	7,0%	4,7%	5,3%	5,7%
-Essences	404	388	575,28	520	570	630	
		-0,7%	6,8%	-1,3%	1,9%	2,0%	2,0%
-Carburéacteur	285	416	564	942	1 185	1 455	
		6,5%	5,2%	6,6%	4,7%	4,2%	5,4%

-Gas oil	2 840	3 550	5 072	5 940	6 650	7 209	
		3,8%	6,1%	2,0%	2,3%	1,6%	3,0%
Shistes bitumineux						-	
Energies renouvelables :	202	460	605	3 045	4 247	5 864	11,2%
-Electricité solaire				1 000	1 300	1 467	
-Electricité hydraulique	185	412	484	400	350	300	
-Electricité éolienne	17	48	121	1 500	2 387	3 816	
-Electricité biomassique				145	210	281	
-Electricité importée	614	527	1 014	-	-	-	
Electricité nucléaire						-	
TOTAL ENERGIE PRIMAIRE	9 745	13 194	16 866	22 093	26 021	30 502	3,6%
		5,2%	4,2%	4,6%	2,8%	2,7%	


^(*) Y compris consommation en produits énergétiques de la SAMIR de 100 000 Tep entre 2000 et 2012

-Structure de la demande d'énergie primaire :

a) En 1 000 Tep:

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Combustibles (Fuel oil non compris)	2 722	4 410	4 056	7 031	7 564	8 697	2,9%
Produits pétroliers	6 207	7 797	11 191	12 017	14 210	15 941	3,0%
Energies renouvelables	202	460	605	3 045	4 247	5 864	11,2%
Electricité importée	614	527	1 014	-	-	-	
Nucléaire + Schistes bitumineux	-	-	-	-	-	-	
Total énergie primaire	9 745	13 194	16 866	22 093	26 021	30 502	3,6%

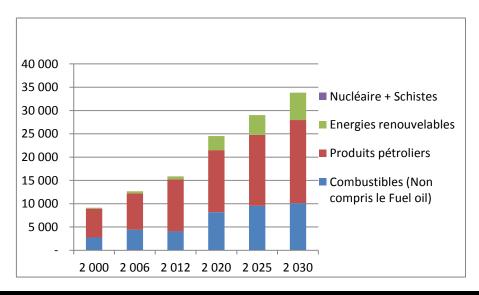
^(**) Y compris consommation des raffineries en gaz naturel de 2 Milliards N m3 entre 2020 et 2030

<u>a) En % :</u>

	2 000	2 006	2 012	2 020	2 025	2 030
Combustibles (Fuel oil non compris)	28	33	24	32	29	29
Produits pétroliers	64	59	66	54	55	52
Energies renouvelables	2	3	4	14	16	19
Electricité importée	6	4	6	1	-	ı
Nucléaire + Schistes bitumineux	1	-	-	-	-	-
Total énergie primaire	100	100	100	100	100	100

2) Scénario "Bas Maitrise d'Energie":

_							Evolution
	2 000	2 006	2012	2020	2025	2030	2006-2030
TOTAL COMBUSTIBLES	4 173	6 137	6 791	9 323	10 443	10 351	
		6,6%	1,7%	4,0%	2,3%	-0,2%	2,2%
-Total fuel oil	1 451	1 727	2 735	1 158	896	265	
fuel oil électricité	610	750	1 600	120	150	100	
fuel oil industrie	841	977	1 135	1 038	746	165	
-Total charbon	2 684	3 931	3 186	2 514	2 898	2 186	
charbon électricité	2 122	3 305	2 251	1 731	2 046	2 043	
charbonl industrie	562	626	935	783	852	143	
-Total gaz naturel	38	479	870	5 650	6 650	7 900	
gaz naturel électricité	-	423	800	3 200	4 200	5 000	
gaz naturel industrie (**)	38	56	70	2 450	2 450	2 900	
TOTAL PRODUITS PETROLIERS (*)	4 756	6 070	8 456	12 161	14 335	17 621	
(Fuel oil non compris)		4,1%	5,7%	4,6%	3,3%	4,2%	4,5%
-Propane	90	163	160	340	400	430	
· ·		10,4%	-0,3%	9,9%	3,3%	1,5%	4,1%
-Butane	1 037	1 453	1 985	3 349	4 366	6 097	
		5,8%	5,3%	6,8%	5,4%	6,9%	6,2%
-Essences	404	388	575,28	520	575	630	
		-0,7%	6,8%	-1,3%	2,0%	1,8%	2,0%
-Carburéacteur	285	416	564	921	1 162	1 425	
		6,5%	5,2%	6,3%	4,8%	4,2%	5,3%
-Gas oil	2 840	3 550	5 072	7 031	7 832	9 039	
		3,8%	6,1%	4,2%	2,2%	2,9%	4,0%
Shistes bitumineux						-	
Energies renouvelables :	202	460	605	3 045	4 247	5 864	11,2%
-Electricité solaire				1 000	1 300	1 467	
-Electricité hydraulique	185	412	484	400	350	300	
-Electricité éolienne	17	48	121	1 500	2 387	3 816	
-Electricité biomassique		.5		145	210	281	


-Electricité importée	614	527	1 014	-	-	-	
Electricité nucléaire						-	
TOTAL ENERGIE PRIMAIRE	9 745	13 194	16 866	24 528	29 025	33 836	4,0%
		5,2%	4,2%	6,4%	2,8%	2,6%	

^(*) Y compris consommation en produits énergétiques de la SAMIR de 100 000 Tep entre 2000 et 2012

-Structure de la demande d'énergie primaire :

a) En 1 000 Tep:

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Combustibles (Fuel oil non compris)	2 722	4 410	4 056	8 164	9 548	10 086	3,5%
Produits pétroliers	6 207	7 797	11 191	13 319	15 231	17 886	3,5%
Energies renouvelables	202	460	605	3 045	4 247	5 864	11,2%
Electricité importée	614	527	1 014	-	-	-	
Nucléaire + Schistes bitumineux	-	-	-	-	ı	-	
Total énergie primaire	9 745	13 194	16 866	24 528	29 025	33 836	4,0%

^(**) Y compris consommation des raffineries en gaz naturel de 2 Milliards N m3 entre 2020 et 2030

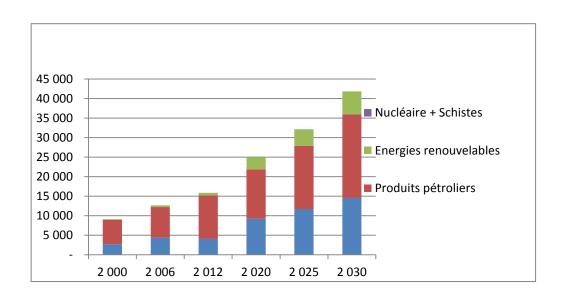
<u>a) En % :</u>

	2 000	2 006	2 012	2 020	2 025	2 030
Combustibles (Fuel oil non compris)	28	33	24	33	33	30
Produits pétroliers	64	59	66	54	52	53
Energies renouvelables	2	3	4	12	15	17
Electricité importée	6	4	6	-	-	ı
Nucléaire + Schistes bitumineux	-	-	-	-	-	1
Total énergie primaire	100	100	100	100	100	100

3) Scénario "Haut Maitrise d'Energie":

							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
TOTAL COMBUSTIBLES	4 173	6 137	6 791	10 007	12 321	15 168	
		6,6%	1,7%	5,0%	4,2%	4,2%	3,8%
-Total fuel oil	1 451	1 727	2 735	791	580	610	
fuel oil électricité	610	750	1 600	110	140	100	
fuel oil industrie	841	977	1 135	681	440	510	
-Total charbon	2 684	3 931	3 186	3 266	4 791	4 658	
charbon électricité	2 122	3 305	2 251	2 599	3 931	4 104	
charbonl industrie	562	626	935	667	860	554	
-Total gaz naturel	38	479	870	5 950	6 950	9 900	
gaz naturel électricité	-	423	800	3 500	4 500	7 000	
gaz naturel industrie (**)	38	56	70	2 450	2 450	2 900	
TOTAL PRODUITS PETROLIERS (*)	4 756	6 070	8 456	11 898	15 543	20 809	
(Fuel oil non compris)		4,1%	5,7%	4,4%	5,5%	6,0%	5,3%
- -Propane	90	163	160	325	380	440	
-i ropane	30	10.4%	-0,3%	9,3%	3,2%	3,0%	4,2%
-Butane	1 037	1 453	1 985	3 531	4 900	7 855	7,270
		5,8%	5,3%	7,5%	6,8%	9,9%	7,3%
-Essences	404	388	575	520	570	630	
		-0,7%	6,8%	-1,3%	1,9%	2,0%	2,0%
-Carburéacteur	285	416	564	941	1 327	1 804	
		6,5%	5,2%	6,6%	7,1%	6,3%	6,3%

		5,2%	4,2%	6,7%	4,3%	4,5%	1,070
TOTAL ENERGIE PRIMAIRE	9 745	13 194	16 866	24 951	32 111	41 841	4,9%
Electricité nucléaire						-	
-Electricité importée	614	527	1 014	-	-	-	
-Electricité biomassique				145	210	281	
-Electricité éolienne	17	48	121	1 500	2 387	3 816	
-Electricité hydraulique	185	412	484	400	350	300	
-Electricité solaire				1 000	1 300	1 467	
	202	460	605	3 045	4 247	5 864	11,2%
Shistes bitumineux						-	
		3,8%	6,1%	3,3%	4,9%	3,8%	4,4%
-Gas oil	2 840	3 550	5 072	6 581	8 366	10 079	

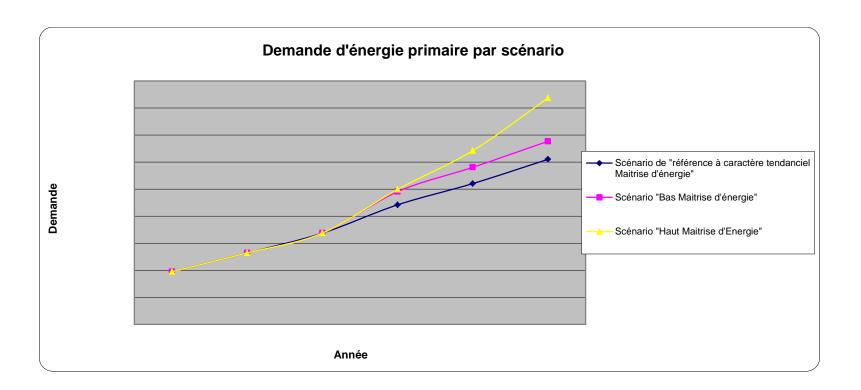

^(*) Y compris consommation en produits énergétiques de la SAMIR de 100 000 Tep entre 2000 et 2012

-Structure de la demande d'énergie primaire :

a) En 1 000 Tep:

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Combustibles (Fuel oil non compris)	2 722	4 410	4 056	9 216	11 741	14 558	5,1%
Produits pétroliers	6 207	7 797	11 191	12 689	16 123	21 419	4,3%
Energies renouvelables	202	460	605	3 045	4 247	5 864	11,2%
Electricité importée	614	527	1 014	-	-	-	
Nucléaire + Schistes bitumineux	-	-	-	-	-	-	
Total énergie primaire	9 745	13 194	16 866	24 951	32 111	41 841	4,9%

^(**) Y compris consommation des raffineries en gaz naturel de 2 Milliards N m3 entre 2020 et 2030

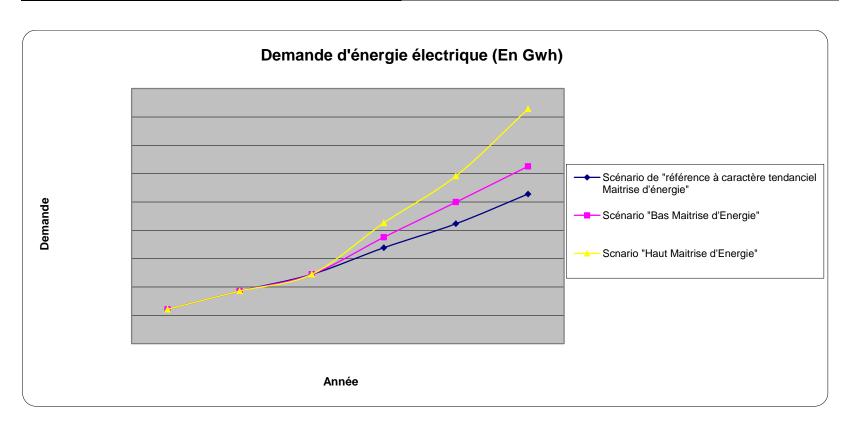


<u>a) En % :</u>

	2 000	2 006	2 012	2 020	2 025	2 030
Combustibles (Fuel oil non compris)	28	33	24	37	37	35
Produits pétroliers	64	59	66	51	50	51
Energies renouvelables	2	3	4	12	13	14
Electricité importée	6	4	6	-	1	1
Nucléaire + Schistes bitumineux	-	-	-	-	-	-
Total énergie primaire	100	100	100	100	100	100

4) Recapitulatif de la demande d'énergie primaire par scénario (En 1 000 Tep):

						T	Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence	9 745	13 194	16 866	22 093	26 021	30 502	
"tendanciel Maitrise d'Energie"		5,2%	4,2%	3,4%	3,3%	3,2%	3,6%
Scénario macroéconomique	9 745	13 194	16 866	24 528	29 025	33 836	
"Bas Maitrise d'Energie"		5,2%	4,2%	4,8%	3,4%	3,1%	4,0%
Scénario macroéconomique	9 745	13 194	16 866	24 951	32 111	41 841	
"Haut Maitrise d'Energie"		5,2%	4,2%	5,0%	5,2%	5,4%	4,9%


B) Activité électrique à l'horizon 2030:

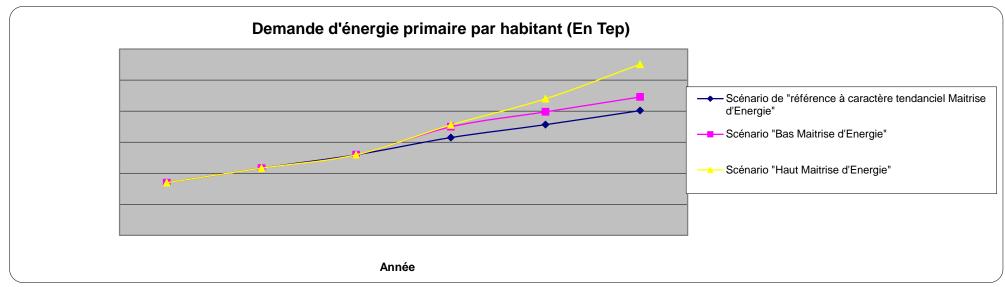
-Demande d'énergie électrique (En GWH):

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence à "caractère tendanciel Maitrise							
d'Energie"	12 143	18 572	24 486	33 869	42 322	52 811	4,5%
Scénario macroéconomique "Bas Maitrise d'Energie"	12 143	18 572	24 486	37 559	49 946	62 581	5,2%
Scénario macroéconomique "Haut Maitrise d'Energie"	12 143	18 572	24 486	42 637	59 189	82 822	6,4%

-Evolution de la demande d'énergie électrique (En %):

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence à "caractère tendanciel Maitrise d'Energie"	7.3	4.7	4.1	4.6	4,5
Scénario macroéconomique "Bas Maitrise d'Energie"	7,3	4,7	5,5	5,9	4,6
Scénario macroéconomique "Haut Maitrise d'Energie"	7,3	4,1	7,2	6,8	7,0

-Energie électrique nette appelée (En GWH):

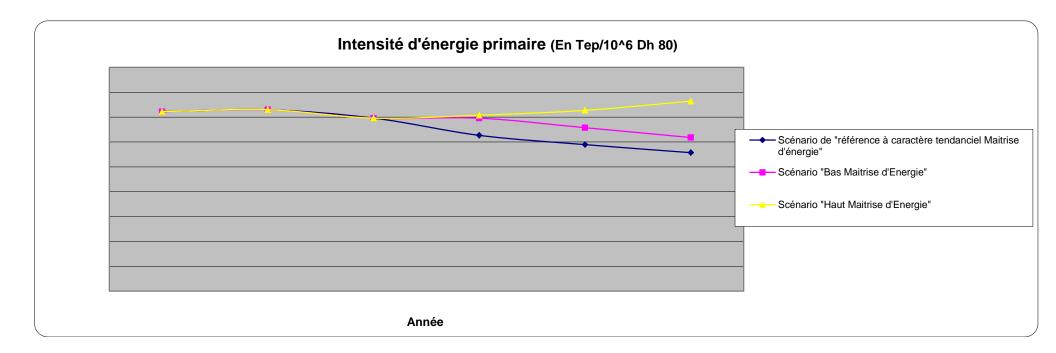

							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Scénario de référence à "caractère tendanciel Maitrise							
d'Energie"	13 957	21 105	26 935	37 256	46 554	58 092	4,3%
Scénario macroéconomique "Bas Maitrise d'Energie"	13 957	21 105	26 935	41 315	54 940	68 839	5,0%
Scénario macroéconomique "Haut Maitrise d'Energie"	13 957	21 105	26 935	46 901	65 108	91 104	6,3%

-Evolution de l'énergie électrique nette appelée (En %):

	2000-2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence à "caractère tendanciel Maitrise d'Energie"	7,1	4,1	4,1	4,6	4,5
Scénario macroéconomique "Bas Maitrise d'Energie"	7,1	4,1	5,5	5,9	4,6
Scénario macroéconomique "Haut Maitrise d'Energie"	7,1	4,1	7,2	6,8	7,0

C) Demande d'énergie primaire par habitant (En Tep):

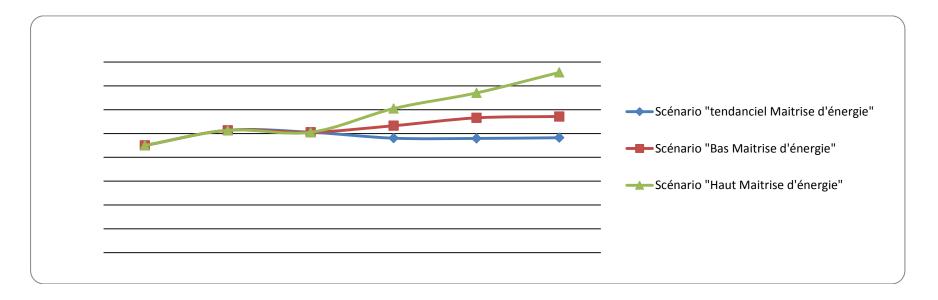
							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence à "caractère tendanciel Maitrise							
d'Energie"	0,34	0,43	0,52	0,63	0,71	0,80	2,6%
Scénario macroéconomique "Bas Maitrise d'Energie"	0,34	0,43	0,52	0,70	0,80	0,89	3,1%
Scénario macroéconomique "Haut Maitrise d'Energie"	0,34	0,43	0,52	0,71	0,88	1,10	4,0%



D) Demande d'énergie électrique par habitant (En Kwh):

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence à "caractère tendanciel Maitrise							
d'Energie"	422	609	753	965	1 159	1 391	3,5%
Scénario macroéconomique "Bas Maitrise d'Energie"	422	609	753	1 070	1 368	1 648	4,2%
·							·
Scénario macroéconomique "Haut Maitrise d'Energie"	422	609	753	1 215	1 621	2 181	5,5%

E) Intensité d'énergie primaire (En Tep/10^6Dh 80):


							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence à "caractère tendanciel Maitrise							
d'Energie"	72	73	70	63	59	56	-1,1%
Scénario macroéconomique "Bas Maitrise d'Energie"	72	73	70	70	66	62	-0,7%
Scénario macroéconomique "Haut Maitrise d'Energie"	72	73	70	71	73	76	0,2%

F) Intensité de la demande électrique (En Gwh/10^9

Dh80):

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence à "caractère tendanciel Maitrise							
d'Energie"	90	103	101	96	96	96	-0,3%
Scénario macroéconomique "Bas Maitrise d'Energie"	90	103	101	107	113	114	0,4%
Scénario macroéconomique "Haut Maitrise d'Energie"	90	103	101	121	134	151	1,6%

PIB:

	2000- 2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence à "caractère tendanciel Maitrise d'Energie"	1,04	0,84	0,96	0,60	0,61
Scénario macroéconomique "Bas Maitrise d'Energie"	1,04	0,84	1,17	0,54	0,52
Scénario macroéconomique "Haut Maitrise d'Energie"	1,04	0,84	1,04	0,68	0,75

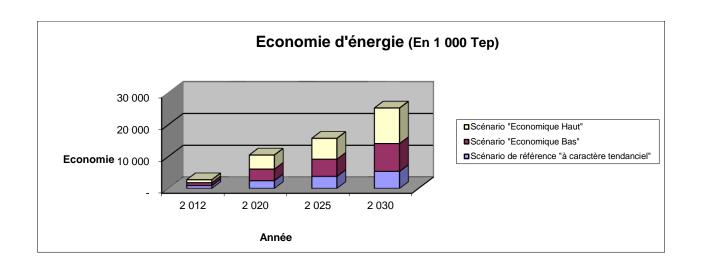
H) Elasticité de la demande d'électricité par rapport au PIB:

	2000- 2006	2006-2012	2012-2020	2020-2025	2025-2030
Scénario de référence à "caractère tendanciel Maitrise d'Energie"	1,47	0,94	0,86	0,99	1,03
Scénario macroéconomique "Bas Maitrise d'Energie"	1,47	0,94	1,00	1,11	0,92
Scénario macroéconomique "Haut Maitrise d'Energie"	1,47	0,83	1,10	1,08	1,16

PARTIE III: ECONOMIES D'ENERGIE

<u>I) DEMANDE D'ENERGIE FINALE (Energie primaire non compris la demande du secteur électrique):</u>

							Evolution
	2 000	2 006	2 012	2 020	2 025	2 030	2006-2030
Scénario de référence à "caractère tendanciel" "Laisser Faire"	6 720	8 839	11 955	16 514	19 617	23 625	4,2%
Scénario macroéconomique "Bas Laisser Faire"	6 720	8 839	11 955	19 323	22 789	27 627	4,9%
Scénario macroéconomique "Haut Laisser Faire"	6 720	8 839	11 955	19 517	24 573	33 609	5,7%


II) ECONOMIE D' ENERGIE PRIMAIRE:

1) En 1 000 Tep:

	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"	915	2 445	3 784	5 381
Scénario macroéconomique "Bas"	915	3 648	5 446	8 786
Scénario macroéconomique "Haut"	915	4 429	6 551	11 112

2) En pourcentage de la demande d'énergie finale:

	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"	8	15	19	23
Scénario macroéconomique "Bas"	8	19	24	32
Scénario macroéconomique "Haut"	8	23	27	33

III) ECONOMIE D'ELECTRICITE:

1) En Gwh:

	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"	2 923	11 064	16 178	21 584
Scénario macroéconomique "Bas"	2 923	11 953	17 064	27 805
Scénario macroéconomique "Haut"	2 923	12 679	21 121	31 802

2) En % de la demande d'électricité finale:

	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"	11	25	28	29
Scénario macroéconomique "Bas"	11	24	25	31
Scénario macroéconomique "Haut"	11	23	26	28

IV) PUISSANCE ELECTRIQUE ECONOMISEE (En MW):

	2 012	2 020	2 025	2 030
Scénario de référence à "caractère tendanciel"	516	1 844	2 489	2 878
Scénario macroéconomique "Bas"	516	1 995	2 625	3 712
Scénario macroéconomique "Haut"	516	2 113	3 249	4 240

PARTS DES ENERGIES RENOUVELABLES DANS LE BILAN D'ENERGIE PRIMAIRE

Scénario énergétique "Laisser Faire"

Scénario de référence à "caractère						
tendanciel" "Laisser Faire"	2	3	3	12	14	16
Scénario macroéconomique "Bas						
Laisser Faire"	2	3	3	11	12	14
Scénario macroéconomique "Haut						
Laisser Faire"	2	3	3	10	11	11

Scénario énergétique "Maitrise d'énergie"

Scénario de référence à "caractère						
tendanciel Maitrise d'Energie"	2	3	4	14	16	19
Scénario macroéconomique "Bas						
Maitrise d'Energie"	2	3	4	12	15	17
Scénario macroéconomique "Haut						
Maitrise d'Energie"	2	3	4	12	13	14

DEMANDE D'ENERGIE PRIMAIRE CONVENTIONNELLE A L'HORIZON 2030:

(Energies traditionnelles non comprises)

Option 2 : Avec développement du gaz naturel, de l'électricité nucléaire et des schistes bitumineux Coefficients d'équivalence énergétique retenus par le Département de l'Energie et des Mines

1) Scénario "Bas Laisser Faire":

	2000	2006	2012	2020	2025	2030	2006-2030
TOTAL COMBUSTIBLES	4 173	6 137	7 706	12 463	14 409	15 214	
		6,6%	3,9%	6,2%	2,9%	1,1%	3,9%
-Total fuel oil	1 451	1 727	2 745	1 330	1 140	700	
fuel oil électricité	610	750	1 610	150	150	100	
fuel oil industrie	841	977	1 135	1 180	990	600	
-Total charbon	2 684	3 931	4 091	5 133	6 269	5 214	
charbon électricité	2 122	3 305	3 156	4 313	5 659	4 304	
charbonl industrie	562	626	935	820	610	910	
-Total gaz naturel	38	479	870	6 000	7 000	9 300	
gaz naturel électricité	-	423	800	3 500	4 500	6 300	
gaz naturel industrie (**)	38	56	70	2 500	2 500	3 000	
TOTAL PRODUITS							
PETROLIERS (*)	4 756	6 070	8 456	12 668	15 815	19 203	
(Fuel oil non compris)		4,1%	5,7%	5,2%	4,5%	4,0%	4,9%
- -Propane	90	163	160	360	440	540	
-Flopane	90						E 10/
-Butane	1 037	10,4% 1 453	- <i>0,3%</i> 1 985	10,7% 3 417	2,5% 4 710	4,2% 6 474	5,1%
-butane	1 037						C 40/
Facanaca	404	5,8% 388	5,3%	7,0% 530	4,1% 585	6,6% 645	6,4%
-Essences	404		575,28				2 40/
-Carburéacteur	285	-0,7% 416	6,8% 564,126	-1,0% 960	1,2% 1 260	2,0% 1 500	2,1%
-Carbureacteur	200	6.5%	5,2%	6.9%	3.5%	3.5%	5,5%
		0,5%	5,2%	0,9%	3,5%	3,5%	J,U/0

-Gas oil	2 840	3 550	5 072	7 401	8 820	10 044	
		3,8%	6,1%	4,8%	2,2%	2,6%	4,4%
Shistes bitumineux						800	
Energies renouvelables :	202	460	605	3 045	4 247	5 864	11,2%
-Electricité solaire				1 000	1 300	1 467	
-Electricité hydraulique	185	412	484	400	350	300	
-Electricité éolienne	17	48	121	1 500	2 387	3 816	
-Electricité biomassique				145	210	281	
-Electricité importée	614	527	1 014	-	-	-	
Electricité nucléaire						1 800	
TOTAL ENERGIE PRIMAIRE	9 745	13 194	17 781	28 177	34 471	42 881	5,0%
		5,2%	5,1%	8,0%	3,4%	3,7%	

^(*) Y compris consommation en produits énergétiques de la SAMIR de 100 000 Tep entre 2000 et 2012

2) Scénario "Bas Maitrise d'Energie":

	2 000	2006	2012	2020	2025	2030	2006-2030
TOTAL COMBUSTIBLES	4 173	6 137	6 791	9 323	10 443	8 052	
		6,6%	1,7%	5,4%	1,9%	-4,2%	2,4%
-Total fuel oil	1 451	1 727	2 735	1 158	896	265	
fuel oil électricité	610	750	1 600	120	150	100	
fuel oil industrie	841	977	1 135	1 038	746	165	
-Total charbon	2 684	3 931	3 186	2 514	2 898	887	
charbon électricité	2 122	3 305	2 251	1 731	2 046	744	
charbonl industrie	562	626	935	783	852	143	
-Total gaz naturel	38	479	870	5 650	6 650	6 900	
gaz naturel électricité	-	423	800	3 200	4 200	4 000	
gaz naturel industrie (**)	38	56	70	2 450	2 450	2 900	
TOTAL PRODUITS PETROLIERS *	4 756	6 070	8 456	12 161	14 335	17 621	
(Fuel oil non compris)		4,1%	5,7%	6,2%	2,8%	3,5%	4,5%
-Propane	90	163	160	340	400	430	
		10,4%	-0,3%	13,4%	2,7%	1,2%	4,2%

^(**) Y compris consommation des raffineries en gaz naturel de 2 Milliards N m3 entre 2020 et 2030

-Butane	1 037	1 453	1 985	3 349	4 366	6 097	
		5,8%	5,3%	9,1%	4,5%	5,7%	5,7%
-Essences	404	388	575,28	520	575	630	
		-0,7%	6,8%	-1,7%	1,7%	1,5%	2,0%
-Carburéacteur	285	416	564	921	1 162	1 425	
		6,5%	5,2%	8,5%	4,0%	The second secon	5,1%
-Gas oil	2 840	3 550	5 072	7 031	7 832	9 039	
		3,8%	6,1%	5,6%	1,8%	2,4%	4,0%
Shistes bitumineux						800	
Energies renouvelables :	202	460	605	3 045	4 247	5 864	11,2%
-Electricité solaire				1 000	1 300	1 467	
-Electricité hydraulique	185	412	484	400	350	300	
-Electricité éolienne	17	48	121	1 500	2 387	3 816	
-Electricité biomassique				145	210	281	
-Electricité importée	614	527	1 014	-	-	-	
Electricité nucléaire					·	1 800	<u> </u>
TOTAL ENERGIE PRIMAIRE	9 745	13 194	16 866	24 528	29 025	34 137	4,0%
		5,2%	4,2%	6,4%	2,8%	2,7%	

^(*) Y compris consommation en produits énergétiques de la SAMIR de 100 000 Tep entre 2000 et 2012

^(**) Y compris consommation des raffineries en gaz naturel de 2 Milliards N m3 entre 2020 et 2030

DEMANDE D'ENERGIE FINALE A L'HORIZON 2030

(Coefficients d'équivalence énergétique retenus par l'AIE)

Pertes distribution pdts petroliers

A-SANS EFFICACITE ENERGETIQUE

1) Scénario de "référence à caractère tendanciel" "Laisser Faire":

(En 1 000 Tep)							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Energie électrique	1 045	1 599	2 360	3 869	5 037	6 405	
		7,3%	6,7%	6,4%	5,4%	4,9%	6,0%
Combustibles industrie:	1 441	1 659	2 140	1 630	2 000	2 600	
		2,4%	4,3%	-4,4%	3,5%	4,5%	1,9%
Fuel oil	841	977	1 135	830	890	700	
Charbon	562	626	935	300	610	900	
Gaz naturel	38	56	70	500	500	1 000	
TOTAL PRODUITS PETROLIERS	4 954	6 359	8 889	11 692	14 179	17 327	
(Fuel oil non compris)		4,2%	5,7%	4,7%	3,3%	3,4%	4,3%
-Propane	102	184	181	324	379	429	
Торанс	102	10.3%	-0.3%	10,2%	2,6%	2,1%	3,6%
-Butane	1 177	1 642	2 243	3 616	4 690	6 328	0,070
		5,7%	5,3%	8,3%	4,4%	5,1%	5,8%
-Essences	432	415	616	538	565	589	
		-0,7%	6,8%	-2,2%	0,8%	0,7%	1,5%
-Carburéacteur	304	443	601	1 003	1 301	1 598	
		6,5%	5,2%	8,9%	4,4%	3,5%	5,5%
-Gas oil	2 939	3 674	5 249	6 210	7 245	8 384	
		3,8%	6,1%	2,8%	2,6%	2,5%	3,5%
Shistes bitumineux	-	-	-	-	-	-	-
TOTAL DEMANDE D'ENERGIE FINALE	7 441	9 617	13 389	17 190	21 216	26 332	
		4,4%	5,7%	4,3%	3,6%	3,7%	4,3%

2) Scénario "Bas Laisser Faire":

(En 1 000 Tep)							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Energie électrique	1 045	1 599	2 360	4 263	5 770	7 782	
		7,3%	6,7%	7,7%	6,2%	6,2%	6,8%
Combustibles industrie:	1 407	1 659	2 140	2 500	2 320	2 510	
		2,8%	4,3%	2,6%	-1,2%	1,3%	1,7%
Fuel oil	807	977	1 135	1 180	990	600	
Charbon	562	626	935	820	830	910	
Gaz naturel	38	56	70	500	500	1 000	
TOTAL PRODUITS PETROLIERS	4 954	6 359	8 889	13 518	16 916	20 609	
(Fuel oil non compris)		4,2%	5,7%	7,2%	3,8%	3,3%	5,0%
-Propane	102	184	181	407	497	610	
		10,3%	-0,3%	14,5%	3,4%	3,5%	5,1%
-Butane	1 177	1 642	2 243	3 861	5 322	7 316	
		5,7%	5,3%	9,5%	5,5%	5,4%	6,4%
-Essences	432	415	616	567	626	690	
		-0,7%	6,8%	-1,4%	1,7%	1,6%	2,1%
-Carburéacteur	304	443	601	1 022	1 342	1 598	
		6,5%	5,2%	9,3%	4,6%	2,9%	5,5%
-Gas oil	2 939	3 674	5 249	7 660	9 129	10 395	
		3,8%	6,1%	6,5%	3,0%	2,2%	4,4%
TOTAL DEMANDE D'ENERGIE FINALE	7 407	9 617	13 389	20 281	25 006	30 901	
		4,4%	5,7%	7,2%	3,6%	3,6%	5,0%

3) Scénario "Haut Laisser Faire":

(En 1 000 Tep)							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Energie électrique	1 045	1 599	2 360	4 763	6 915	9 869	
		7,3%	6,7%	9,2%	7,7%	7,4%	7,9%
Combustibles industrie:	1 407	1 659	2 140	2 450	2 400	3 300	
		2,8%	4,3%	2,3%	-0,3%	5,5%	2,9%
Fuel oil	807	977	1 135	1 090	800	1 000	
Charbon	562	626	935	860	1 100	1 300	
Gaz naturel	38	56	70	500	500	1 000	
TOTAL PRODUITS PETROLIERS	4 954	6 359	8 889	13 293	17 442	24 542	
(Fuel oil non compris)		4,2%	5,7%	6,9%	4,6%	5,9%	5,8%
-Propane	102	184	181	373	463	565	
-Butane	1 177	10,3% 1 642	-0,3% 2 243	12,8% 4 031	3,7% 5 650	3,4% 9 180	4,8%
-Essences	432	5,7% 415	5,3% 616	10,3% 621	5,8% 690	8,4% 765	7,4%
-Carburéacteur	304	-0,7% 443	6,8% 601	0,1% 1 022	1,8%	1,7% 1 981	2,6%
		6,5%	5,2%	9,3%	5,7%	5,6%	6,4%
-Gas oil	2 939	3 674 3.8%	5 249 6.1%	7 246 5.5%	9 212	12 051 4.6%	5,1%
Shistes bitumineux	-	-	-	-	-,170	-	-
TOTAL DEMANDE D'ENERGIE FINALE	7 407	9 617	13 389	20 506	26 757	37 711	
		4,4%	5,7%	7.4%	4,5%	5.9%	5,9%

A - AVEC EFFICACITE ENERGETIQUE

1) Scénario de "référence à caractère tendanciel" "Maitrise d'énergie":

(En 1 000 Tep)							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Energie électrique	1 045	1 599	2 108	2 916	3 644	4 547	
		7,3%	4,7%	4,1%	4,6%	4,5%	4,5%
Combustibles industrie:	1 407	1 620	2 140	1 598	1 875	2 134	
		2,4%	4,7%	-4,7%	2,7%	2,2%	1,2%
Fuel oil	807	938	1 135	732	961	538	
Charbon	562	626	935	416	464	696	
Gaz naturel	38	56	70	450	450	900	
TOTAL PRODUITS PETROLIERS	4 954	6 359	8 889	11 917	14 025	16 456	
(Fuel oil non compris)		4,2%	5,7%	5,0%	2,8%	2,7%	4,0%
Dranana	102	184	181	367	429	497	
-Propane	102	_					4 20/
-Butane	1 177	10,3% 1 642	-0,3% 2 243	12,5% 3 842	2,6% 4 841	2,5% 6 274	4,2%
2 3.530		5,7%	5,3%	9,4%	3,9%	4,4%	5,7%
-Essences	432	415	616	556	610	674	5,: 70
		-0,7%	6,8%	-1,7%	1,5%	1,7%	2,0%
-Carburéacteur	304	443	601	1 003	1 262	1 550	
		6,5%	5,2%	8,9%	3,9%	3,5%	5,4%
-Gas oil	2 939	3 674	5 249	6 148	6 883	7 461	
		3,8%	6,1%	2,7%	1,9%	1,4%	3,0%
TOTAL DEMANDE D'ENERGIE FINALE	7 407	9 578	13 137	16 431	19 544	23 137	
101AL DEMANDE D'ENEROIE I MALL	' 40'	4,4%	5,4%	3,8%	2,9%	2,9%	3,7%

2) Scénario "Bas Maitrise d'Energie":

(En 1 000 Tep)							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Energie électrique	1 045	1 599	2 108	3 234	4 300	5 388	
		7,3%	4,7%	5,5%	5,9%	4,6%	5,2%
Combustibles industrie:	1 407	1 620	2 140	2 200	1 875	2 134	
		2,4%	4,7%	0,5%	-2,6%	2,2%	1,2%
Fuel oil	807	938	1 135	980	961	538	
Charbon	562	626	935	720	464	696	
Gaz naturel	38	56	70	500	450	900	
TOTAL PRODUITS PETROLIERS	4 954	6 359	8 889	12 983	15 344	18 922	
(Fuel oil non compris)		4,2%	5,7%	6,5%	2,8%	3,6%	4,6%
-Propane	102	184	181	384	452	486	
		10,3%	-0,3%	13,4%	2,7%	1,2%	4,1%
-Butane	1 177	1 642	2 243	3 784	4 933	6 890	
		5,7%	5,3%	9,1%	4,5%	5,7%	6,2%
-Essences	432	415	616	556	615	674	
		-0,7%	6,8%	-1,7%	1,7%	1,5%	2,0%
-Carburéacteur	304	443	601	981	1 238	1 518	
		6,5%	5,2%	8,5%	4,0%	3,5%	5,3%
-Gas oil	2 939	3 674	5 249	7 277	8 106	9 355	
		3,8%	6,1%	5,6%	1,8%	2,4%	4,0%
TOTAL DEMANDE D'ENERGIE FINALE	7 407	9 578	13 137	18 416	21 520	26 444	
		4,4%	5,4%	5,8%	2,6%	3,5%	4,3%

_

3) Scénario "Haut Maitrise d'Energie":

(En 1 000 Tep)							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Energie électrique	1 045	1 599	2 108	3 671	5 096	7 131	
		7,3%	4,7%	7,2%	6,8%	7,0%	6,4%
Combustibles industrie:	1 407	1 620	2 140	1 771	1 732	1 944	
		2,4%	4,7%	-3,1%	-0,4%	1,9%	0,8%
Fuel oil	807	938	1 135	654	422	490	
Charbon	562	626	935	667	860	554	
Gaz naturel	38	56	70	450	450	900	
TOTAL PRODUITS PETROLIERS	4 954	6 359	8 889	12 728	16 648	22 401	
(Fuel oil non compris)		4,2%	5,7%	6,2%	4,6%	5,1%	5,4%
-Propane	102	184	181	367	429	497	
ropano	102	10,3%	-0.3%	12,5%	2,6%	2,5%	4,2%
-Butane	1 177	1 642	2 243	3 990	5 537	8 876	.,= /
		5,7%	5.3%	10.1%	5,6%	8,2%	7,3%
-Essences	432	415	616	556	610	674	,
		-0,7%	6,8%	-1,7%	1,5%	1,7%	2,0%
-Carburéacteur	304	443	601	1 002	1 413	1 921	
O II	0.000	6,5%	5,2%	8,9%	5,9%	5,3%	6,3%
-Gas oil	2 939	3 674	5 249	6 812	8 659	10 432	4 40
		3,8%	6,1%	4,4%	4,1%	3,2%	4,4%
TOTAL DEMANDE D'ENERGIE FINALE	7 407	9 578	13 137	18 169	23 476	31 476	
		4,4%	5,4%	5.6%	4,4%	5.0%	5,1%

II-EMISSIONS DE CO2:

Facteur d'émission en T/Tep:

Fuel oil	Charbo	n	Gaz naturel	Propane	Butane	Essences	Carburéacteur	Gas oil	Petrole brut	En Traditionnelles	schistes
3,	2	4,0	2,3	2,6	2,6	2,9	3,0	3,1	0,15	3,4	4,7
Facteur d'é	mission*fa	acteu	ır de combustion								
Fuel oil	Charbo	n	Gaz naturel	Propane	Butane	Essences	Carburéacteur	Gas oil	Petrole brut	En Traditionnelles	schistes
3,	2	3,9	2,3	2,6	2,6	2,8	2,5	3,0	0,1	3,3	4,6

2) Scénario "Bas Laisser Faire":

(En 1 000Tonnes)							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Energie électrique	10 299	16 379	19 388	25 529	33 133	39 856	
		8,0%	2,9%	3,5%	5,4%	3,8%	3,8%
Combustibles industrie:	4 865	5 697	7 447	12 730	12 166	12 395	
		2,7%	4,6%	9,3%	-0,8%	0,3%	3,3%
Fuel oil	2 562	3 101	3 601	3 745	3 142	1 904	
Charbon	2 215	2 467	3 685	3 232	3 271	3 586	
Gaz naturel	87	129	161	5 753	5 753	6 904	
TOTAL PRODUITS PETROLIERS	14 529	18 475	25 769	38 475	47 914	58 031	
(Fuel oil non compris)		4,1%	5,7%	6,9%	3,7%	3,2%	4,9%
-Propane	264	477	468	1 052	1 286	1 579	
		10,3%	-0,3%	14,5%	3,4%	3,5%	5,1%
-Butane	3 045	4 248	5 803	9 989	13 770	18 927	
		5,7%	5,3%	9,5%	5,5%	5,4%	6,4%
-Essences	1 229	1 180	1 750	1 612	1 780	1 962	
		-0,7%	6,8%	-1,4%	1,7%	1,6%	2,1%
-Carburéacteur	757	1 105	1 498	2 549	3 346	3 983	
		6,5%	5,2%	9,3%	4,6%	2,9%	5,5%
-Gas oil	8 930	11 162	15 946	23 272	27 733	31 581	
		3,8%	6,1%	6,5%	3,0%	2,2%	4,4%

SOUS TOTAL	29 692	40 551	52 604	76 735	93 213	110 282	
		5,3%	4,4%	6,5%	3,3%	2,8%	4,3%
Raffinage de pétrole	2 512	3 172	4 317	6 206	7 505	8 811	
Energies traditionnelles	10 506	9796,08	9 130	7 297	6 456	5 614	
		-1,2%	-1,2%	-3,7%	-2,0%	-2,3%	-2,3%
TOTAL GLOBAL	42 710	53 518	66 051	90 238	107 174	124 707	
		3,8%	3,6%	5,3%	2,9%	2,6%	3,6%

2) Scénario "Bas Maitrise d'Energie":

(En 1 000Tonnes)							Evolution
	2000	2006	2012	2020	2025	2030	2006-2030
Energie électrique	10 299	16 379	15 790	14 567	18 205	19 876	
		8,0%	-0,6%	-1,0%	4,6%	1,8%	0,8%
Combustibles industrie:	4 865	5 729	7 447	11 701	10 517	11 123	
		2,8%	4,5%	7,8%	-1,8%	0,9%	2,8%
Fuel oil	2 562	3 132	3 601	3 110	3 050	1 706	
Charbon	2 215	2 467	3 685	2 837	1 829	2 743	
Gaz naturel	87	129	161	5 753	5 638	6 674	
TOTAL PRODUITS PETROLIERS	14 529	18 475	25 769	36 919	43 394	53 202	
(Fuel oil non compris)		4,1%	5,7%	6,2%	2,7%	3,5%	4,5%
-Propane	264	477	468	994	1 169	1 257	
							4,1%
-Butane	3 045	4 248	5 803	9 790	12 763	17 825	
							6,2%
-Essences	1 229	1 180	1 750	1 582	1 749	1 916	
							2,0%
-Carburéacteur	757	1 105	1 498	2 445	3 086	3 784	
							5,3%
-Gas oil	8 930	11 162	15 946	22 108	24 626	28 420	
		3,8%	6,1%	5,6%	1,8%	2,4%	4,0%
SOUS TOTAL	29 692	40 583	49 006	63 187	72 115	84 201	
		5,3%	3,2%	4,3%	2,2%	2,6%	3,1%
Raffinage de pétrole	2 512	3 176	4 317	5 884	6 827	8 072	

Energies traditionnelles	10 506	9 796	9 096	6 771	5 968	5 165	
		-1,2%	-1,2%	-4,8%	-2,1%	-2,4%	-2,6%
TOTAL GLOBAL	42 710	53 555	62 420	75 842	84 910	97 437	
		3,8%	2,6%	3,3%	1,9%	2,3%	2,5%

ECONOMIES GLOBALESDE CO2

En 1 000Tonnes

	2012	2020	2025	2030
Energie électrique	3 598	10 962	14 928	19 981
Combustibles industrie:	-	1 029	1 650	1 272
Fuel oil	-	635	92	198
Charbon	-	394	1 442	843
Gaz naturel	-	-	115	230
TOTAL PRODUITS PETROLIERS	-	1 556	4 521	4 829
(Fuel oil non compris)				
-Propane	-	58	117	322
-Butane	-	200	1 006	1 102
-Essences	-	30	30	46
-Carburéacteur	-	104	260	199
-Gas oil	-	1 164	3 107	3 161
SOUS TOTAL	3 598	13 548	21 098	26 081
Raffinage de pétrole	-	322	678	739
Eergies traditionnelles	33	526	488	450
Energies renouvelables	5 636	12 001	16 737	23 110
Energie nucléaire				-
TOTAL GLOBAL	9 267	26 397	39 001	50 380

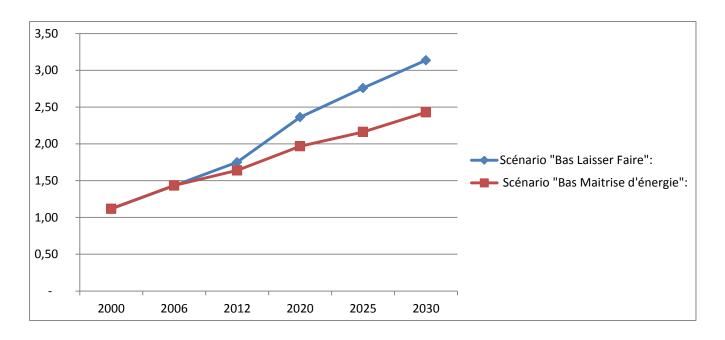
DEMANDE D'ENERGIES RENOUVELABLES

En 1 000 Tep

	2000	2006	2012	2020	2025	2030
Energies renouvelables :	202	460	1 430	3 045	4 247	5 864
-Electricité solaire				1 000	1 300	1 467
-Electricité hydraulique	185	412	430	400	350	300
-Electricité éolienne	17	48	1 000	1 500	2 387	3 816
-Electricité biomassique				145	210	281

ECONOMIES DE CO2 DUES AUX ENERGIES RENOUVELABLES

En 1 000Tonnes


	2000	2006	2012	2020	2025	2030
Energies renouvelables :	796	1 813	5 636	12 001	16 737	23 110
-Electricité solaire	-	-	-	3 941	5 123	5 781
-Electricité hydraulique	729	1 624	1 695	1 576	1 379	1 182
-Electricité éolienne	67	189	3 941	5 911	9 407	15 039
-Electricité biomassique	-	-	-	572	828	1 108

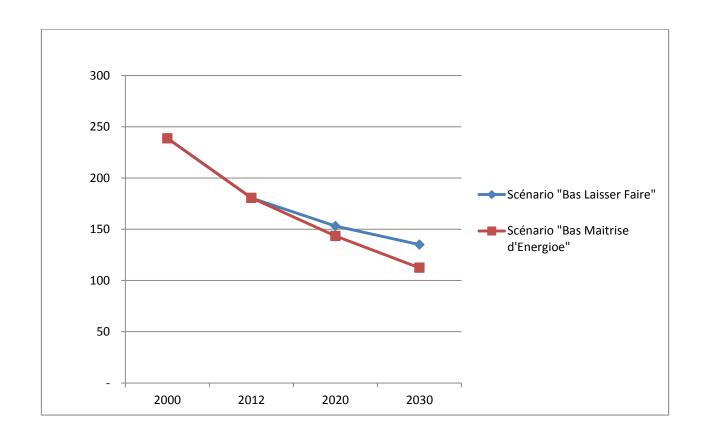
EMISSIONS DE Co2/Habitant (Energie primaire)

(Non compris les énergies traditionnelles)

(En Tonne)							2000-2030
	2000	2006	2012	2020	2025	2030	(En %)
Scénario "Bas Laisser Faire":	1,12	1,43	1,75	2,36	2,76	3,14	3,5
Scénario "Bas Maitrise d'énergie":	1,12	1,43	1,64	1,97	2,16	2,43	2,6
Economies Co2/Habitant	-	-	0,11	0,40	0,60	0,71	6,4

Evolution

INTENSITE GLOBALE DE Co2 (Energie primaire)


(Non compris les énergies traditionnelles)

INTENSITE GLOBALE DE Co2 (Energie primaire)

					Evolution
					2000-2030
	2000	2012	2020	2030	(En %)
Scénario "Bas Laisser Faire":	239	180	153	135	-1,9
Scénario "Bas Maitrise d'énergie":	239	181	143	112	-2,5

Gain d'intensité (En %)

Evalution

DEMANDE D'ENERGIE FINALE PAR SECTEUR ECONOMIQUE

(Y compris charbon de bois et bois de feu)

Coefficients d'équivalence énergétique retenus par L'AIE

Sans développement du gaz naturel

SANS EFFICACITE ENERGETIQUE

(En 1 000 Tep)

Année 2000: (En 1000 Tep)

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Ch de bois	En.tradition	Eléctricité	Total
DEMANDE TOTALE	102	1 177	432	304	2 939	832	562	38	143	3010	1 045	10 585
Agriculture	-	-	-	-	731	-	-	-	-	-	55	786
Industrie	80	-	-	-	194	807	562	38	-	-	381	2 062
Transport	-	-	432	304	1 684	-	-	-	-	-	74	2 494
Tertiaire	18	-	-	-	314	25	-	-	-	460	191	1 009
Résidentiel	_	1 177	-	_	16	-	-	_	143	2 550	344	4 230

Scénario économique "Bas Laisser Faire":

Année 2006: (En 1000 Tep)

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Ch de bois	En.tradition	Eléctricité	Total
DEMANDE TOTALE	184	1 642	415	443	3 674	977	626	56	140	2800	1 599	12 557
Agriculture	-	-	-	-	919	-	-	-	-	-	84	1 003
Industrie	144	-	-	-	236	947	626	56	-	-	650	2 659
Transport	-	-	415	443	2 145	-	-	-	-	-	47	3 051
Tertiaire	40	-	-	-	355	30	-	-	-	428	286	1 139
Résidentiel	_	1 642	-	-	21	-	-	-	140	2 372	531	4 706

Scénario économique "Bas Laisser Faire":

Année 2012:

(En 1000 Tep)

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Charb de bois	En,Traditionnelles	Electricité	TOTAL
	Flopane	Dutane	LSSEIICES	AIN	Gas on	i dei oli	Charbon	Tiaturei	DOIS	LII, I TAUILIOIIITEILES	Liectricite	TOTAL
DEMANDE TOTALE	181	2 243	616	601	5 249	1 135	935	70	140	2 600	2 360	16 129
Agriculture	-	-	-	-	1 321				-	-	121	1 442
Industrie	133	-	-	-	357	1 135	935	70	-	-	888	3 518
Transport	-	-	616	601	3 044				-	-	83	4 343
Tertiaire	47	_	-	-	496	-			-	400	428	1 372
Résidentiel	-	2 243	-	-	30				140	2 200	840	5 453

Scénario économique "Bas Laisser Faire":

Année 2020:

(En 1000 Tep)

								Gaz	Charb de			
	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	naturel	bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	407	3 861	567	1 022	7 660	1 180	820	500	140	2 050	4 263	22 471
Agriculture	-	-	-	-	1 940				-	-	226	2 167
Industrie	287	-	-	-	460	1 180	820	500	-	-	1 609	4 855
Transport	-	-	567	1 022	4 358				-	-	171	6 118
Tertiaire	120	-	-	_	841				-	350	843	2 153
Résidentiel	_	3 861	-	-	61				140	1 700	1 415	7 178

Scénario économique "Bas Laisser Faire":

Année 2030:

(En 1000 Tep)

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Charb de bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	610	7 316	690	1 598	10 395	600	910	1 000	135	1 550	7 782	32 586
Agriculture	-	-	-	-	2 659				-	-	467	3 126
Industrie	418	-	-	-	541	600	910	1 000	-	-	2 757	6 226
Transport	-	-	690	1 598	5 857				-	-	417	8 561
Tertiaire	192	-	-	-	1 246				-	300	1 712	3 450
Résidentiel	_	7 316	-	-	94				135	1 250	2 429	11 223

Demande d'énergie finale par secteur et par usage:

DEMANDE D'ENERGIE FINALE DANS LE SECTEUR DE L'INDUSTRIE

Scénario économique "Bas Laisser Faire":

(En 1000 Tep)

			` ',		2030/2000
	2000	2012	2020	2030	(En %)
IGCE:		1	•		
Sucre	170	192	207	268	1,5
Ciment	486	607	640	769	1,5
Papier	38	43	51	56	1,3
Pate à papier	28	32	36	39	1,1
Phosphates	228	292	310	460	2,4
Acide+engrais	51	73	86	156	3,8
Total IGCE	1 001	1 238	1 331	1 747	1,9
<u>IL:</u>					
IAA	7	16	17	19	3,3
TC	74	90	123	143	2,2
AMC+BTP	230	257	271	360	1,5
CP	12	15	21	25	2,5
IMME	60	76	82	206	4,2
MINES +Divers	23	29	37	41	1,9
Total IL	406	902	1 169	763	2,1
Total industrie	1 407	2 140	2 500	2 510	1,9

483

2012

Scénario économique "Bas Laisser Faire":

Demande de Gas oil:

(En 1000 Tep)

2020

					` '
Tota IGCE	58	93	113	132	2,8
IL:					
IAA	38	84	119	142	4,5
TC	5	9	13	16	4,4
AMC+BTP	70	136	167	197	3,5
СР	6	14	19	23	4,3
IMME	7	15	20	24	4,0
MINES +Divers	10	6	7	7	-1,0
Total IL	136	264	346	409	3,7
Total industrie	194	357	460	541	3,5

2000

2030/2000

2030 (En %)

Scénario économique "Bas Laisser Faire":

Demande d'électricité:

(En 1000 Tep)

	,					
					2030/2000	
	2000	2012	2020	2030	(En %)	
IGCE:	·					
Sucre	9	22	40	60	6,4	
Ciment	67	164	280	453	6,6	
Papier	8	22	38	55	6,5	
Pate à papier	13	35	60	81	6,2	
Phosphates	21	38	57	88	5,0	
Acide+engrais	16	43	70	119	6,8	
Total IGCE	135	324	544	856	6,4	
<u>IL:</u>						
IAA	39	97	190	338	7,5	
TC	85	193	381	712	7,3	
AMC+BTP	19	38	66	119	6,4	
CP	43	113	216	375	7,5	
IMME	30	56	103	178	6,1	
MINES +Divers	30	66	109	179	6,1	
Total IL	246	564	1 064	1 901	7,1	
Total électricité industrie	381	888	1 609	2 757	6,8	
Propane industrie	80	133	287	418	5,7	
TOTAL GLOBAL INDUSTRIE	2 062	3 518	4 855	6 226	3,8	

<u>DEMANDE D'ENERGIE FINALE DANS LE SECTEUR DES TRANSPORTS</u>

Scénario économique "Bas Laisser Faire":

					2030/2000
	2 000	2 012	2 020	2 030	(En %)
1) Voitures individuelles:	638	814	783	882	1,1
Essences	286	370	321	403	1,1
Gas oil	351	443	461	480	1,0
2) Motocyclettes:	1	1	1	1	0,0
3) Véhicules utilitaires:	955	1 884	2 774	3 862	4,8
Essences	146	245	246	287	2,3
Gas oil	810	1 639	2 528	3 576	5,1
4) Transport collectif:	119	250	383	438	4,5
Cars de ligne	72	153	234	229	3,9
Car de tourisme	31	64	99	138	5,2
Taxis	16	33	51	71	5,2
5) Transport par camions:	345	587	828	1 117	4,0
Transport public	130	201	229	403	3,9
Transport privé	92	181	263	366	4,7
Transport informel	124	247	379	386	3,9
6) Transport ferroviaire:	103	124	218	475	5,2
Gas oil	29	41	47	58	2,3
Electricité	74	83	171	417	5,9

7) Transport aérien:					
Carburéacteur	304	601	1 022	1 598	5,7
8) Transport par cabotage					0,0
Gas oil	30	62	110	189	6,3
TOTAL ENERGIE FINALE:	2 494	4 343	6 118	8 561	4,2
Electricité	74	83	171	417	5,9
Essences	432	616	567	690	1,6
ATK	304	601	1 022	1 598	5,7
Gas oil	1 684	3 044	4 358	5 857	4,2

<u>DEMANDE D'ENERGIE FINALE DANS LE SECTEUR RESIDENTIEL</u>

Scénario économique "Bas Laisser Faire":

Demande d'énergie finale par usage:

(En 1000 Tep)

					2030/2000
	2000	2012	2020	2030	(En %)
cuisson	2 938	3 816	4 895	7 495	3,2
Eau chaude sanitaire	412	536	695	1 047	3,2
Chauffage	440	496	647	1 035	2,9
Eclairage	234	349	500	823	4,3
Electricité spécifique	190	260	379	730	4,6
TOTAL	4 214	5 453	7 116	11 130	3,3

Demande d'énergie finale par forme:

Scénario économique "Bas Laisser Faire":

		(En 1000 Tep)			
					(En %)
	2 000	2 012	2 020	2 030	
Electricite	344	840	1 415	2 429	6,7
Butane	1 177	2 243	3 861	7 316	6,3
Charbon de bois	143	140	140	135	-0,2
Energies traditionnelles	2 550	2 200	1 700	1 250	-2,3
SOUS TOTAL	4 214	5 423	7 116	11 130	3,3
Gas oil	16	30	61	94	6,0
TOTAL GLOBAL	4 230	5 453	7 178	11 223	3,3

DEMANDE D'ENERGIE FINALE DANS LE SECTEUR AGRICOLE

Scénario économique "Bas Laisser Faire":

		2030/2000 (En %)			
	2000	2010	2020	2030	
Gas oil	731	1 321	1 940	2 659	4,4
Electricité	55	121	226	467	7,4
Total	786	1 442	2 167	3 126	4,7

<u>DEMANDE D'ENERGIE FINALE DANS LE SECTEUR TERTIAIRE</u>

Scénario économique "Bas Laisser Faire":

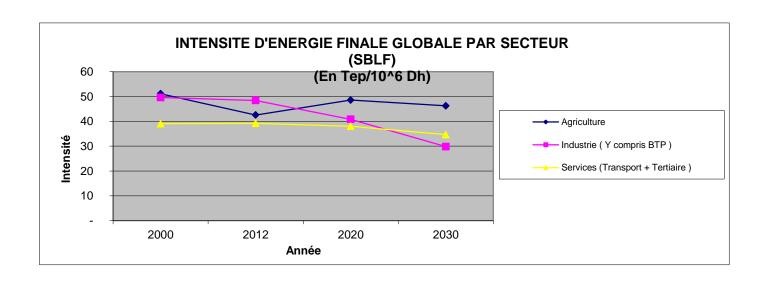
(En 1000 Tep)

					2030/2000
	2000	2012	2020	2030	(En %)
Propane	18	47	120	192	8,2
Gas oil	314	496	841	1 246	4,7
Fuel oil	25	1	1	-	-
Energies traditionnelles	460	400	350	300	-1,4
Electricité	191	428	843	1 712	7,6
Total Tertiaire	1 009	1 372	2 153	3 450	4,2

DEMANDE GLOBALE D'ENERGIE FINALE PAR SECTEUR ECONOMIQUE:

Scénario économique "Bas Laisser Faire":

(En 1000 Tep)


	2000	2012	2020	2030
Industrie	2 062	3 518	4 855	6 226
Transport	2 494	4 343	6 118	8 561
Résidentiel	4 230	5 453	7 178	11 223
Agriculture	786	1 442	2 167	3 126
Tertiaire	1 009	1 372	2 153	3 450
Total énergie finale	10 580	16 128	22 471	32 586

INTENSITE D'ENERGIE FINALE GLOBALE PAR SECTEUR ECONOMIQUE:

Scénario économique "Bas Laisser Faire":

(En Tep/10^6 Dh)

	2000	2012	2020	2030
Agriculture	51	43	49	46
Industrie (Y compris BTP)	50	48	41	30
Services (Transport+ Tertiaire)	45	42	40	36
Total secteurs	78	67	60	53

DEMANDE GLOBALE D'ELECTRICITE PAR SECTEUR ECONOMIQUE:

Scénario économique "Bas Laisser Faire":

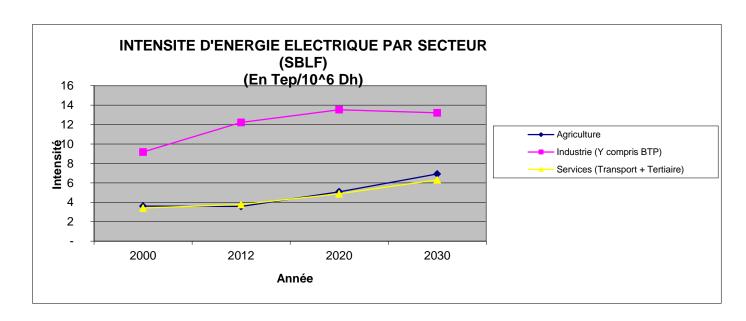
(En 1000 Tep)

	2000	2012	2020	2030
Industrie	381	888	1 609	2 757
Transport	74	83	171	417
Résidentiel	344	840	1 415	2 429
Agriculture	55	121	226	467
Tertiaire	191	428	843	1 712
Total électricité finale	1 045	2 360	4 263	7 782

DEMANDE GLOBALE D'ELECTRICITE PAR SECTEUR ECONOMIQUE:

Scénario économique "Bas Laisser Faire":

(En Gwh)


	2000	2012	2020	2030
Industrie	4 425	10 309	18 682	32 024
Transport	859	959	1 980	4 842
Résidentiel	3 991	9 756	16 436	28 212
Agriculture	643	1 405	2 630	5 423
Tertiaire	2 224	4 976	9 786	19 885
Total électricité finale	12 143	27 405	49 515	90 386

INTENSITE D'ENERGIE ELECTRIQUE PAR SECTEUR ECONOMIQUE:

Scénario économique "Bas Laisser Faire":

(En Tep/10⁶ Dh)

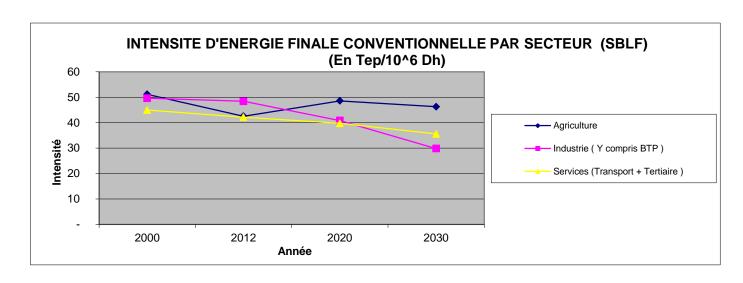
	2000	2012	2020	2030
Agriculture	4	4	5	7
Industrie (Y compris BTP)	9	12	14	13
Services (Transport+ Tertiaire)	3	4	5	6
Total secteurs	8	10	11	13

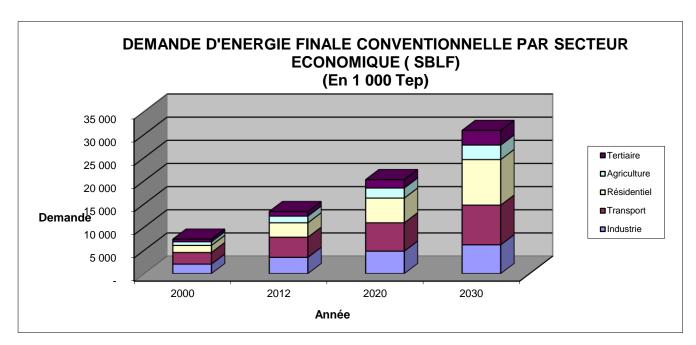
<u>DEMANDE GLOBALE D'ENERGIE FINALE CONVENTIONNELLE PAR SECTEUR</u> ECONOMIQUE:

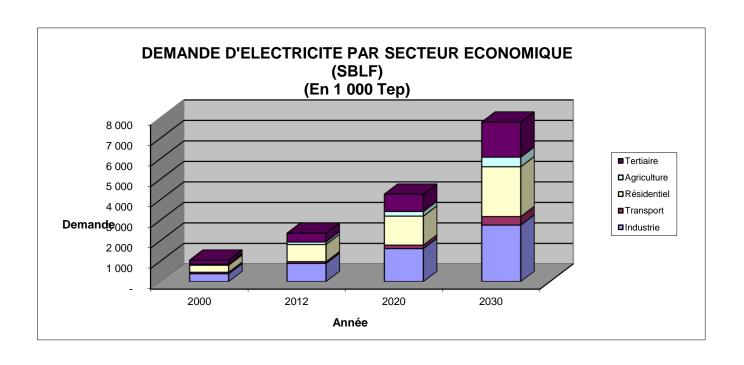
(Non compris le bois de feu et le charbon de bois)

Scénario économique "Bas Laisser Faire":

(En 1000 Tep)


	2000	2012	2020	2030
Industrie	2 062	3 518	4 855	6 226
Transport	2 494	4 343	6 118	8 561
Résidentiel	1 537	3 113	5 338	9 838
Agriculture	786	1 442	2 167	3 126
Tertiaire	549	972	1 803	3 150
Total énergie finale	7 427	13 388	20 281	30 901


INTENSITE D'ENERGIE FINALE CONVENTIONNELLE PAR SECTEUR ECONOMIQUE:


Scénario économique "Bas Laisser Faire":

(En Tep/10⁶ Dh)

	2000	2012	2020	2030
Agriculture (*)	51	43	49	46
Industrie (Y compris BTP)	50	48	41	30
Services (Transport+ Tertiaire)	39	39	38	35
Total secteurs	55	55	55	50

DEMANDE D'ENERGIE FINALE PAR SECTEUR ECONOMIQUE

(Y compris charbon de bois et bois de feu)

Coefficient de conversion énergétique retenus par L'AIE

AVEC EFFICACITE ENERGETIQUE

(En 1 000 Tep)

Année 2000: (En 1000 Tep)

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Ch de bois	En.tradition	Eléctricité	Total
DEMANDE TOTALE	102	1 177	432	304	2 939	832	562	38	143	3 010	1 045	10 585
Agriculture	-	-	-	-	731	-	-	-	-	-	55	786
Industrie	80	-	-	-	194	807	562	38	-	-	381	2 062
Transport	-	-	432	304	1 684	-	-	-	-	-	74	2 494
Tertiaire	18	-	-	_	314	25	-	-	-	460	191	1 009
Résidentiel	-	1 177	-	_	16	-	_	-	143	2 550	344	4 230

Scénario économique "Bas Maitrise d'énergie":

Année 2006:

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Ch de bois	En.tradition	Eléctricité	Total
DEMANDE TOTALE	184	1 642	415	443	3 674	977	626	56	140	2 800	1 599	12 557
Agriculture	-	-	-	-	919	-	-	-	-	-	84	1 003
Industrie	144	_	-	-	236	947	626	56	-	-	650	2 659
Transport	-	-	415	443	2 145	_	-	-	-	-	47	3 051
Tertiaire	40	_	_	-	355	30	_	-	-	428	286	1 139
Résidentiel	-	1 642	-	-	21	-	-	-	140	2 372	531	4 706

Scénario économique "Bas Maitrise d'énergie":

Année 2012:

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Charb de bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	181	2 243	616	601	5 249	1 135	935	70	130	2 600	2 108	15 867
Agriculture	-	-	-	-	1 321				-	-	120	1 441
Industrie	133	-	-	-	357	1 135	935	70	-	-	836	3 466
Transport	-	-	616	601	3 044				-	-	80	4 341
Tertiaire	47	-	-	-	496	_			-	400	390	1 333
Résidentiel	-	2 243	-	_	30				130	2 200	685	5 288

Scénario économique "Bas Maitrise d'énergie":

Année 2020:

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz	Charb de bois	En,Traditionnelles	Flectricité	TOTAL
DEMANDE TOTALE	384	3 784		981	7 277	980	720	500	120	1 912	3 234	20 448
Agriculture	-	-	-	-	1 891				-	-	217	2 108
Industrie	275	-	-	-	437	980	720	464	-	-	1 390	4 265
Transport	-	-	556	981	4 121				-	-	155	5 812
Tertiaire	83	-	-	-	768				-	320	540	1 711
Résidentiel	-	3 784	-	_	58				120	1 621	933	6 516

Scénario économique "Bas Maitrise d'énergie":

Année 2030:

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Charb de bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	486	6 890	674	1 518	9 355	538	696	900	100	1 450	5 388	27 995
Agriculture	-	-	-	-	2 573				_	-	424	2 997
Industrie	376	-	-	-	477	538	696	900	-	-	2 048	5 035
Transport	-	-	674	1 518	5 098				-	-	366	7 656
Tertiaire	110	-	-	-	1 123				-	250	1 064	2 546
Résidentiel	-	6 890	-	-	84				100	1 200	1 487	9 761

Demande d'énergie finale par secteur et par usage:

DEMANDE D'ENERGIE FINALE DANS LE SECTEUR DE L'INDUSTRIE

Scénario économique "Bas Maitrise d'énergie":

Demande	de	comb	ustibles:

(En 1000 Tep)

201141140 40 001112401121001			(=	,	
					2030/2000
	2000	2012	2020	2030	(En %)
IGCE:					-
Sucre	170	192	176	232	1,0
Ciment	486	607	531	687	1,2
Papier	38	43	31	37	-0,1
Pate à papier	28	32	30	32	0,4
Phosphates	228	292	320	346	1,4
Acide+engrais	51	73	68	96	2,1
Total IGCE	1 001	1 238	1 156	1 429	1,2
<u>IL:</u>					
IAA	7	16	16	18	
TC	74	90	108	140	
AMC+BTP	230	257	403	337	
СР	12	15	30	23	
IMME	60	76	64	146	
MINES +Divers	23	29	59	40	
Total IL	406	902	1 008	704	
Total industrie	1 407	2 140	2 164	2 134	1,4

Scénario économique "Bas Maitrise d'énergie":

Demande de Gas oil:

(En 1000 Tep)

					2000,2000
	2000	2012	2020	2030	(En %)
Tota IGCE	58	93	108	116	2,4
IL:					
IAA	38	84	113	125	4,1
TC	5	9	12	14	4,0
AMC+BTP	70	136	159	174	3,1
CP	6	14	19	20	3,9
IMME	7	15	19	21	3,6
MINES +Divers	10	6	7	7	-1,4
Total IL	136	264	329	361	3,3
Total industrie	194	357	437	477	3,1

2030/2000

Scénario économique "Bas Maitrise d'énergie":

Demande d'électricité:

(En 1000 Tep)

			(
					2030/2000
	2000	2012	2020	2030	(En %)
IGCE:					
Sucre	9	21	34	44	5,4
Ciment	67	155	242	337	5,5
Papier	8	21	33	41	5,5
Pate à papier	13	33	52	60	5,1
Phosphates	21	36	49	66	3,9
Acide+engrais	16	40	60	89	5,8
Total IGCE	135	305	470	636	5,3
IL:					
IAA	39	91	164	251	6,4
TC	85	182	329	529	6,3
AMC+BTP	19	36	57	88	5,3
CP	43	106	187	278	6,4
IMME	30	53	89	133	5,1
MINES +Divers	30	63	94	133	5,1
Total IL	246	531	919	1 412	6,0
Electricité Industrie	381	836	1 390	2 048	5,8
Propane	80	133	275	376	
TOTAL GLOBAL INDUSTRIE	2 062	3 466	4 265	5 035	3,0

<u>DEMANDE D'ENERGIE FINALE DANS LE SECTEUR DES TRANSPORTS</u>

Scénario économique "Bas Maitrise d'énergie":

			(En 1000 rep	•	
					2030/2000
	2 000	2 012	2 020	2 030	(En %)
1) Voitures individuelles:	638	775	667	678	0,2
Essences	286	370	315	393	1,1
Gas oil	351	405	352	285	-0,7
2) Motocyclettes:	1	1	1	1	0,0
3) Véhicules utilitaires:	955	1 883	2 659	3 464	4,4
Essences	146	244	245	287	2,3
Gas oil	810	1 639	2 414	3 177	4,7
4) Transport collectif:	119	250	362	468	4,7
Cars de ligne	72	153	221	286	4,7
Car de tourisme	31	64	93	121	4,7
Taxis	16	33	48	62	4,7
5) Transport par camions:	345	650	877	1 017	3,7
Transport public	130	238	316	351	3,4
Transport privé	92	181	249	325	4,3
Transport informel	124	231	312	342	3,4
6) Transport ferroviaire:	103	117	199	416	4,8
Gas oil	29	41	45	50	1,8
Electricité	74	80	155	366	5,5

7) Transport aérien:	-				0,0
Carburéacteur	304	441	712	996	4,0
8) Transport par cabotage	-				0,0
Gas oil	30	55	70	100	4,1
TOTAL ENERGIE FINALE:	2 494	4 341	5 812	7 656	3,8
Electricité	74	80	155	366	5,5
Essences	432	616	556	674	1,5
ATK	304	601	981	1 518	5,5
Gas oil	1 684	3 044	4 121	5 098	3,8

DEMANDE D'ENERGIE FINALE DANS LE SECTEUR RESIDENTIEL

Scénario économique "Bas Maitrise d'énergie":

Demande d'énergie finale par usage:

(En 1000 Tep)

					2030/2000
	2000	2012	2020	2030	(En %)
cuisson	2 938	3 680	4 442	6 509	2,7
Eau chaude sanitaire	412	517	609	910	2,7
Chauffage	440	489	588	900	2,4
Eclairage	234	247	290	417	1,9
Electricité spécifique	190	326	530	941	5,5
TOTAL	4 214	5 258	6 458	9 676	2,8

Demande d'énergie finale par forme:

Scénario économique "Bas Maitrise d'énergie":

		(En 1000 Tep)			2030/2000 (En %)
	2 000	2 012	2 020	2 030	0,0
Electricite	344	685	933	1 487	5,0
Butane	1 177	2 243	3 784	6 890	6,1
Charbon de bois	143	130	120	100	-1,2
Energies traditionnelles	2 550	2 200	1 621	1 200	-2,5
TOTAL	4 214	5 258	6 458	9 676	2,8
Gas oil	16	30	58	84	
TOTAL GLOBAL	4 230	5 288	6 516	9 761	

DEMANDE D'ENERGIE FINALE DANS LE SECTEUR AGRICOLE

Scénario économique "Bas Maitrise d'énergie":

	(1 000 Tep)				2030/2000 (En %)
	2000	2010	2020	2030	0,0
Gas oil	731	1 321	1 891	2 573	4,3
Electricité	55	120	217	424	7,0
Total	786	1 441	2 108	2 997	4,6

<u>DEMANDE D'ENERGIE FINALE DANS LE SECTEUR TERTIAIRE</u>

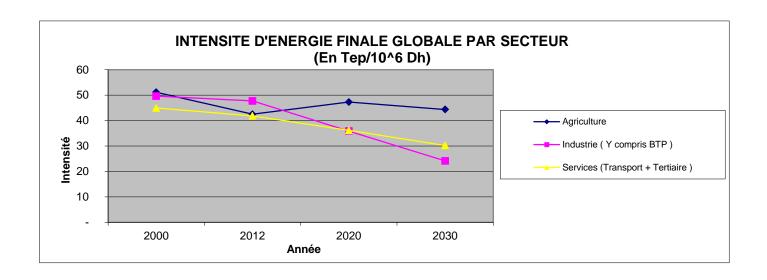
Scénario économique "Bas Maitrise d'énergie":

(En 1000 Tep)

					2030/2000
	2000	2012	2020	2030	(En %)
Propane	18	47	83	110	6,2
Gas oil	314	496	768	1 123	4,3
Fuel oil	25	1	1	-	-
Energies traditionnelles	460	400	320	250	-2,0
Electricité	191	390	540	1 064	5,9
Total Tertiaire	1 009	1 333	1 711	2 546	3,1

DEMANDE GLOBALE D'ENERGIE FINALE PAR SECTEUR ECONOMIQUE:

Scénario économique "Bas Maitrise d'énergie":


	2000	2012	2020	2030
Industrie	2 062	3 466	4 265	5 035
Transport	2 494	4 341	5 812	7 656
Résidentiel	4 230	5 288	6 516	9 761
Agriculture	786	1 441	2 108	2 997
Tertiaire	1 009	1 333	1 711	2 546
Total énergie finale	10 580	15 869	20 413	27 995

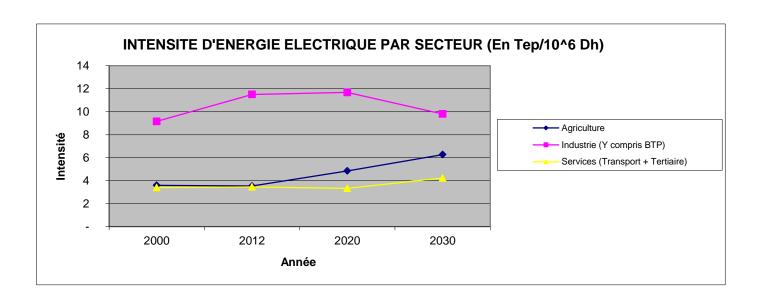
INTENSITE D'ENERGIE FINALE GLOBALE PAR SECTEUR ECONOMIQUE:

Scénario économique "Bas Maitrise d'énergie":

(En Tep/10^6 Dh)

	2000	2012	2020	2030
Agriculture	51	42	47	44
Industrie (Y compris BTP)	50	48	36	24
Services (Transport+ Tertiaire)	45	42	36	30
Total secteurs	78	66	55	46

DEMANDE GLOBALE D'ELECTRICITE PAR SECTEUR ECONOMIQUE:


Scénario économique "Bas Maitrise d'énergie":

	2000	2012	2020	2030
Industrie	381	836	1 390	2 048
Transport	74	80	155	366
Résidentiel	344	685	933	1 487
Agriculture	55	120	217	424
Tertiaire	191	390	540	1 064
Total électricité finale	1 045	2 111	3 234	5 388

INTENSITE D'ENERGIE ELECTRIQUE PAR SECTEUR ECONOMIQUE:

Scénario économique "Bas Maitrise d'énergie":

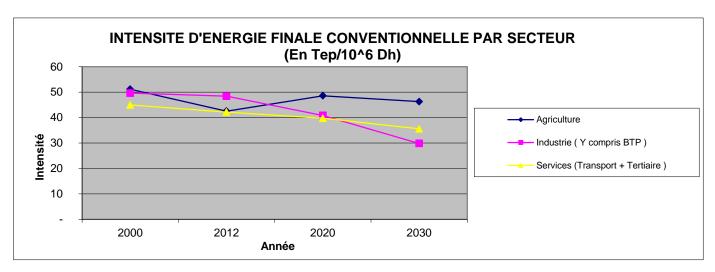
	2000	2012	2020	2030
Agriculture	4	4	5	6
Industrie (Y compris BTP)	9	12	12	10
Services (Transport+ Tertiaire)	3	3	3	4
Total secteurs	8	9	9	9

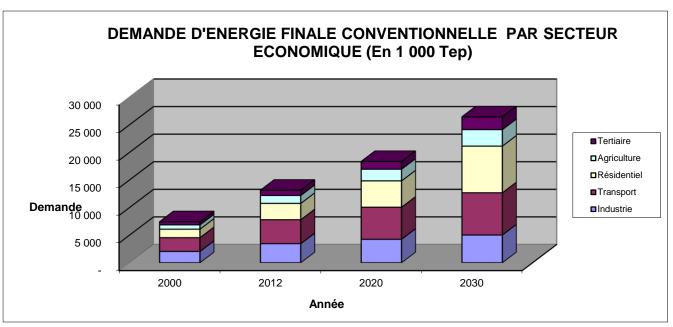
<u>DEMANDE GLOBALE D'ENERGIE FINALE CONVENTIONNELLE PAR SECTEUR ECONOMIQUE:</u>

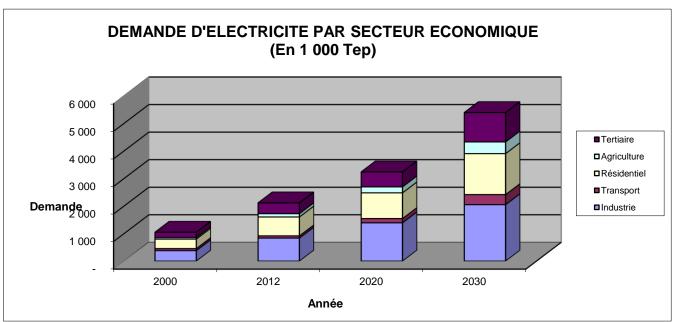
(Non compris le bois de feu et le charbon de bois)

Scénario économique "Bas Maitrise d'énergie":

(En 1000 Tep)

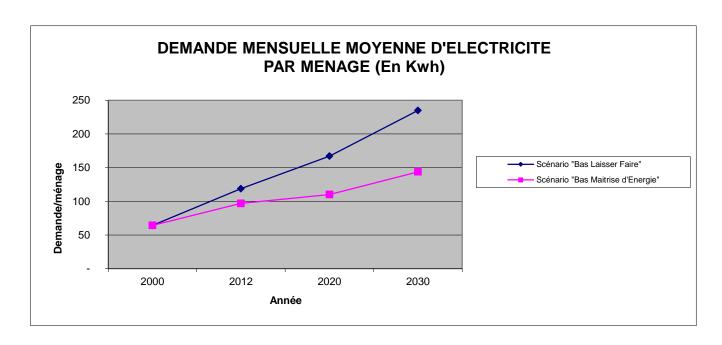

	2000	2012	2020	2030
Industrie	2 062	3 466	4 265	5 035
Transport	2 494	4 341	5 812	7 656
Résidentiel	1 537	2 958	4 775	8 461
Agriculture	786	1 441	2 108	2 997
Tertiaire	549	933	1 391	2 296
Total énergie finale	7 427	13 139	18 352	26 445


INTENSITE D'ENERGIE FINALE CONVENTIONNELLE PAR SECTEUR ECONOMIQUE:


Scénario économique "Bas Maitrise d'énergie":

(En Tep/10⁶ Dh)

	2000	2012	2020	2030
Agriculture	51	42	47	44
Industrie (Y compris BTP)	50	48	36	24
Services (Transport+ Tertiaire)	39	39	35	29
Total secteurs	55	54	49	43


<u>DEMANDE MOYENNE D'ELECTRICITE PAR MENAGE DANS LE RESIDENTIEL (En Kwh):</u>

Par an:

					Evolution
	2000	2012	2020	2030	2030/2000
Scénario Economique "BLF":	771	1 426	2 006	2 820	4,4
Scénario Economique "BME":	771	1 163	1 322	1 726	2,7

Par mois:

					Evolution
	2000	2012	2020	2030	2030/2000
Scénario Economique "BLF":	64	119	167	235	4,4
Scénario Economique "BME":	64	97	110	144	2,7

ECONOMIES D'ENERGIE:

1) ECONOMIE D'ELECTRICITE FINALE PAR SECTEUR (En Gwh):

Scénario économique "Bas":

	2012	2020		2030
Industrie	600	2 546	8 248	
Transport	30	186	594	
Résidentiel	1 802	5 607	10 956	
Agriculture	12	114	499	
Tertiaire	446	3 515	7 539	
Total électricité finale	2 890	11 968	27 836	

2) ECONOMIE D'ELECTRICITE FINALE PAR SECTEUR :

(En % de la demande d'electricité finale):

Scénario économique "Bas":

(En 1000 Tep)

	2012	2020	2030
Industrie	5,8	13,6	25,7
Transport	3,1	9,4	12,3
Résidentiel	18,5	34,1	38,8
Agriculture	0,8	4,3	9,2
Tertiaire	9,0	35,9	37,9
Total électricité finale	10,5	24,1	30,8

3) PUISSANCE ELECTRIQUE ECONOMISEE PAR SECTEUR (En MW):

Scénario économique "Bas":

	2012	2020	2030
Industrie	107	424	1 100
Transport	5	31	79
Résidentiel	322	935	1 461
Agriculture	2	19	66
Tertiaire	80	586	1 005
Total Puissance électrique	516	1 995	3 712

4) ECONOMIE D'ENERGIE FINALE CONVENTIONNELLE PAR SECTEUR:

(Equivalence à la consommation pour l'électricité)

Scénario économique "Bas":

			(=:::::::::::::::::::::::::::::::::::::
	2012	2020	2030
Industrie	52	590	1 191
Transport	3	305	905
Résidentiel	155	563	1 377
Agriculture	1	59	129
Tertiaire	38	412	854
Total énergie finale	249	1 929	4 457

5) ECONOMIE D'ENRGIE FINALE CONVENTIONNELLE PAR SECTEUR:

(En % de la demande d'énergie finale):

(Equivalence à la consommation pour l'électricité)

Scénario économique "Bas":

(En 1000 Tep)

	2012	2020	2030
Industrie	1,5	12,2	19,1
Transport	0,1	5,0	10,6
Résidentiel	5,0	10,5	14,0
Agriculture	0,1	2,7	4,1
Tertiaire	4,0	22,9	27,1
Total énergie finale	1,9	9,5	14,4

6) ECONOMIE D'ENRGIE PRIMAIRE CONVENTIONNELLE PAR SECTEUR:

(Equivalence à la production pour l'électricité)

Scénario économique "Bas":

(En 1000 Tep)

	2012	2020	2030
Industrie	305	1 033	2 089
Transport	7	338	970
Résidentiel	432	1 538	2 571
Agriculture	3	78	183
Tertiaire	107	1 023	1 675
Total énergie primaire	693	3 771	8 741

7) ECONOMIE D'ENRGIE PRIMAIRE CONVENTIONNELLE PAR SECTEUR (En % de la demande d'énergie finale):

Scénario économique "Bas":

	2012	2020	2030
Industrie	8,7	21,3	33,6
Transport	0,2	5,5	11,3
Résidentiel	13,9	28,8	26,1
Agriculture	0,2	3,6	5,9
Tertiaire	11,0	56,8	53,2
Total énergieprimaire conventionnelle	5,2	18,6	28,3

II-EMISSIONS DE CO2:

Facteur d'émission en T/Tep:

En 1000Tonnes de CO2

2	Fuel oil	Charbon	Gaz naturel	Propane	Butane	Essences	Carburéacteur	Gas oil	Petrole brut	En Traditionnelles	schistes
	3,2	4,0	2,3	2,6	2,6	2,9	3,0	3,1	0,15	3,4	4,7

Facteur de combustion

0,98

Facteur d'émission*facteur de combustion

F	Fuel oil	Charbon	Gaz naturel	Propane	Butane	Essences	Carburéacteur	Gas oil	Petrole brut	En Traditionnelles	schistes
	3,2	3,9	2,3	2,6	2,6	2,8	2,5	3,0	0,1	3,3	4,6

(15 % national)

Scénario économique "Bas Laisser Faire":

Année 2012:

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Charb de bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	468	5 803	1 750	1 498	15 946	3 601	3 685	161	466	8 663	17 158	59 199
Agriculture	-	-	-	-	4 014	-	-	-	-	-	880	4 894
Industrie	345	-	-	-	1 084	3 601	3 685	161	-	-	6 453	15 330
Transport	-	-	1 750	1 498	9 249	-	-	-	-	-	601	13 097
Tertiaire	122	-	-	-	1 507	-	-	-	-	1 333	3 115	6 076
Résidentiel	-	5 803	-	-	92	-	_	-	466	7 330	6 107	19 799

Scénario économique "Bas Laisser Faire":

Année 2020:

(En 1000 Tonne)

	_	_	_					Gaz	Charb de			
	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	naturel	bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	1 052	9 989	1 612	2 549	23 286	3 745	3 232	1 151	466	6 831	22 592	76 506
Agriculture	-	-	-	1	5 895	-	-	-	-	-	1 200	7 095
Industrie	743	-	-	-	1 396	3 745	3 232	1 151	-	-	8 525	18 792
Transport	-	-	1 612	2 549	13 239	-	-	-	-	-	904	18 304
Tertiaire	309	-	1	-	2 570	-	-	-	-	1 166	4 465	8 511
Résidentiel	-	9 989	-	-	186	-	-	-	466	5 664	7 500	23 806

Scénario économique "Bas Laisser Faire":

Année 2030:

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Charb de bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	1 579	18 927	1 962	3 983	31 597	1 904	3 586	2 301	450		35 271	106 725
Agriculture	_	-	-	-	8 077	-	-	-	-	-	2 116	10 194
Industrie	1 082	-	-	-	1 642	1 904	3 586	2 301	-	-	12 497	23 013
Transport	-	1	1 962	3 983	17 792	-	-	-	-	-	1 890	25 627
Tertiaire	496	•	-	-	3 802	-	-	-	-	1 000	7 760	13 057
Résidentiel	-	18 927	-	-	284	-	-	-	450	4 165	11 009	34 835

Scénario économique "Bas Maitrise d'énergie":

Année 2012:

(En 1000 Tonne)

	Dropono	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz	Charb de bois	En,Traditionnelles	Electricité	TOTAL
	Propane	Dutarie	ESSERICES	AIN	Gas on	ruei oii	Charbon	naturel	טטוס	En, rraditionnelles	Electricite	TOTAL
DEMANDE TOTALE	468	5 803	1 750	1 498	15 946	3 601	3 685	161	433	8 663	13 973	55 981
Agriculture	_	-	-	1	4 014	-		-	-	-	795	4 809
Industrie	345	-	ı	ı	1 084	3 601	3 685	161	ı	-	5 499	14 375
Transport	_	-	1 750	1 498	9 249	,	1	-	1	-	524	13 020
Tertiaire	122	-	-	-	1 507	-	-	-	-	1 333	3 074	6 036
Résidentiel	_	5 803	1	-	92	-	-	-	433	7 330	4 052	17 710

Scénario économique "Bas Maitrise d'énergie"

Année 2020:

								Gaz	Charb de			
	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	naturel	bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	926	9 790	1 582	2 445	22 101	3 110	2 837	1 068	400	6 467	12 891	63 617
Agriculture	-	-	-	-	5 746	-	-	-	-	-	864	6 609
Industrie	711	-	-	-	1 327	3 110	2 837	1 068	-	-	5 539	14 593
Transport	-	-	1 582	2 445	12 519	-	_	-	_	-	616	17 162
Tertiaire	215	-	-	-	2 332	-	_	-	-	1 066	2 154	5 767
Résidentiel	-	9 790	-	-	177	-	-	-	400	5 401	3 719	19 487

Scénario économique "Bas Maitrise d'énergie"

Année 2030:

(En 1000 Tonne)

		_						Gaz	Charb de			
	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	naturel	bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	1 257	17 825	1 916	3 784	28 421	1 706	2 743	2 071	333	4 831	17 589	82 478
Agriculture	-	-	-	1	7 816	-	-	-	-	-	1 384	9 200
Industrie	973	-	-	-	1 451	1 706	2 743	2 071	-	-	6 685	15 629
Transport	-	-	1 916	3 784	15 489	-	-	-	-	-	1 194	22 383
Tertiaire	285	-	1	-	3 410		-	-	-	833	3 472	8 000
Résidentiel	-	17 825	1	-	256	-	-	-	333	3 998	4 854	27 266

ECONOMIES DE CO2 PAR SECTEUR

Année 2012:

		5.	_	A =1.6				Gaz	Charb de			T0T41
	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	naturel	bois	En,Traditionnelles	Electricite	TOTAL
DEMANDE TOTALE	-	-	-	-	-	-	-	-	33	-	3 211	3 244
Agriculture	-	-	-	-	-	-	-	-	_	-	84	84
Industrie	-	-	-	-	-	-	-	-	-	-	955	955
Transport	-	-	-	-	-	-	-	-	-	-	77	77
Tertiaire	-	-	-	-	-	-	-	-	-	-	40	40
Résidentiel	-	-	-	-	-	-	-	-	33	-	2 055	2 088

Année 2020:

(En 1000 Tonne)

								Gaz	Charb de			
	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	naturel	bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	114	200	30	104	1 185	635	394	83	67	363	9 701	12 876
Agriculture	-	-	ı	-	149	•	-	-	-	-	336	485
Industrie	32	-	-	-	70	635	394	83	-	-	2 985	4 199
Transport	_	-	30	104	720	-	-	-	-	-	288	1 142
Tertiaire	82	-	1	-	238	-	-	-	-	100	2 312	2 744
Résidentiel	_	200	-	-	9	-	-	-	67	263	3 781	4 320

Année 2030:

	Propane	Butane	Essences	ATK	Gas oil	Fuel oil	Charbon	Gaz naturel	Charb de bois	En,Traditionnelles	Electricité	TOTAL
DEMANDE TOTALE	321	1 102	46	199	3 176	198	843		117			24 247
Agriculture	-	-	-	-	262	-	_	-	_	-	732	994
Industrie	110	-	-	-	192	198	843	230	-	-	5 811	7 384
Transport	-	-	46	199	2 303	-	-	-	-	-	695	3 243
Tertiaire	212	-	-	-	391	-	-	-	-	167	4 287	5 057
Résidentiel	_	1 102	1	1	28	-	-	-	117	167	6 155	7 569

DEMANDE D'ENERGIE FINALE PAR SECTEUR

Scénario Bas Laisser Faire

(En 1 000 Tep)

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	5043	7 432	9 617	13 389	20 281	30 901
Agriculture	566	786	1 003	1 442	2 167	3 126
Industrie	1656	2 062	2 659	3 518	4 855	6 226
Transport	1641	2 494	3 051	4 343	6 118	8 561
Tertiaire	321	549	711	972	1 803	3 150
Résidentiel	859	1 537	2 194	3 113	5 338	9 838

Scénario Bas Laisser Faire

En %

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	100	100	100	100	100	100
Agriculture	11	11	10	11	11	10
Industrie	33	28	28	26	24	20
Transport	33	34	32	32	30	28
Tertiaire	6	7	7	7	9	10
Résidentiel	17	21	23	23	26	32

DEMANDE D'ELECTRICITE FINALE PAR SECTEUR

Scénario Bas Laisser Faire

(En 1 000 Tep)

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	633	1 045	1 599	2 360	4 263	7 782
Agriculture	37	55	84	121	226	467
Industrie	264	381	650	888	1 609	2 757
Transport	17	74	47	83	171	417
Tertiaire	127	191	286	428	843	1 712
Résidentiel	188	344	531	840	1 415	2 429

Scénario Bas Laisser Faire

En %

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	100	100	100	100	100	100
Agriculture	6	5	5	5	5	6
Industrie	42	36	41	38	38	35
Transport	3	7	3	4	4	5
Tertiaire	20	18	18	18	20	22
Résidentiel	30	33	33	36	33	31

DEMANDE DE GAS OIL PAR SECTEUR

Scénario Bas Laisser Faire

(En 1 000 Tep)

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	1788	2 939	3 674	5 249	7 660	10 395
Agriculture	529	731	919	1 321	1 940	2 659
Industrie	133	194	236	357	460	541
Transport	949	1 684	2 145	3 044	4 358	5 857
Tertiaire	162	314	355	496	841	1 246
Résidentiel	15	16	21	30	61	94

Scénario Bas Laisser Faire

En %

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	100	100	100	100	100	100
Agriculture	30	25	25	25	25	26
Industrie	7	7	6	7	6	5
Transport	53	57	58	58	57	56
Tertiaire	9	11	10	9	11	12
Résidentiel	1	1	1	1	1	1

DEMANDE D'ENERGIE FINALE PAR SECTEUR

Scénario Bas Maitrise d'énergie

(En 1 000 Tep)

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	5043	7 432	9 617	13 137	18 416	26 445
Agriculture	566	786	1 003	1 441	2 108	2 997
Industrie	1656	2 062	2 659	3 466	4 265	5 035
Transport	1641	2 494	3 051	4 341	5 812	7 656
Tertiaire	321	549	711	933	1 391	2 296
Résidentiel	859	1 537	2 194	2 958	4 775	8 461

Scénario Bas Maitrise d'énergie

En %

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	100	100	100	100	100	100
Agriculture	11	11	10	11	11	11
Industrie	33	28	28	26	23	19
Transport	33	34	32	33	32	29
Tertiaire	6	7	7	7	8	9
Résidentiel	17	21	23	23	26	32

DEMANDE D'ELECTRICITE FINALE PAR SECTEUR

Scénario Bas Maitrise d'énergie

(En 1 000 Tep)

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	633	1 045	1 599	2 108	3 234	5 388
Agriculture	37	55	84	120	217	424
Industrie	264	381	650	836	1 390	2 048
Transport	17	74	47	80	155	366
Tertiaire	127	191	286	390	540	1 064
Résidentiel	188	344	531	685	933	1 487

Scénario Bas Maitrise d'énergie

En % (En 1 000 Tep)

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	100	100	100	100	100	100
Agriculture	6	5	5	6	7	8
Industrie	42	36	41	40	43	38
Transport	3	7	3	4	5	7
Tertiaire	20	18	18	18	17	20
Résidentiel	30	33	33	32	29	28

DEMANDE DE GAS OIL PAR SECTEUR

Scénario Bas Maitrise d'énergie

(En 1 000 Tep)

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	1788	2 939	3 674	5 249	7 277	9 355
Agriculture	529	731	919	1 321	1 891	2 573
Industrie	133	194	236	357	437	477
Transport	949	1 684	2 145	3 044	4 121	5 098
Tertiaire	162	314	355	496	768	1 123
Résidentiel	15	16	21	30	58	84

Scénario Bas Maitrise d'énergie

En %

	1990	2000	2006	2012	2020	2030
DEMANDE TOTALE	100	100	100	100	100	100
Agriculture	30	25	25	25	26	28
Industrie	7	7	6	7	6	5
Transport	53	57	58	58	57	55
Tertiaire	9	11	10	9	11	12
Résidentiel	1	0,6	0,6	0,6	0,8	0,9

EMISSIONS Co2/SECTEUR ECONOMIQUE

(Non compris les Energies traditionnelles)

Scénario Bas Laisser Faire :

(En 1000 Tonnes)

	2000	2012	2020	2030
Agriculture	2 765	4 894	7 095	10 194
Industrie	9 412	15 330	18 792	23 013
Transport	7 832	13 097	18 304	25 627
Tertiaire	2 966	4 744	7 345	12 058
Résidentiel	6 479	12 002	17 676	30 220
Total secteurs	29 455	50 066	69 210	101 110

Scénario Bas Maitrise d'énergie :

(En 1000 Tonnes)

	2000	2012	2020	2030
Agriculture	2 765	4 809	9 200	9 200
Industrie	9 412	14 375	15 629	15 629
Transport	7 832	13 020	22 383	22 383
Tertiaire	2 966	4 703	17 162	7 167
Résidentiel	6 479	9 947	13 685	22 934
Total secteurs	29 455	46 855	78 059	77 313

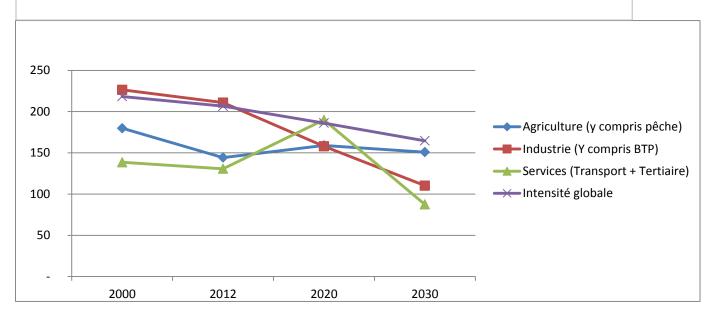
Scénario économique "Bas":

Valeurs ajoutées par secteurs économique (En 10^6 Dh):

	2000	2012	2020	2030
Agriculture (y compris pêche)	15 377	33 917	44 615	67 575
Industrie (Y compris BTP)	41 580	72 678	118 974	208 867
Services (Transport + Tertiaire)	77 943	135 666	208 205	337 874
PIB total	134 900	242 261	371 795	614 316

INTENSITE DE Co2/SECTEUR ECONOMIQUE:

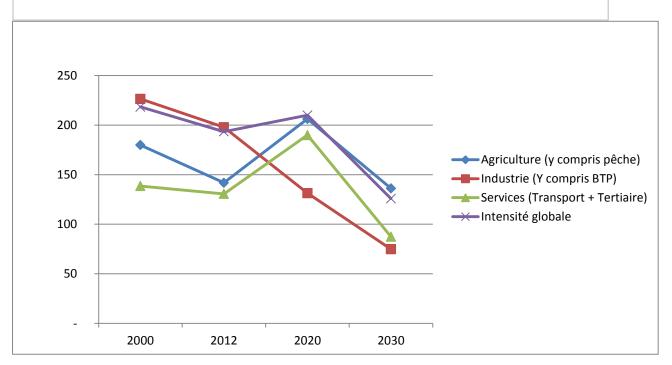
(Emissions de Co2/Valeur ajoutée du secteur en Dh 1980)


(Non compris les Energies traditionnelles)

Scénario Bas Laisser Faire :

(En Tonne Co2/1000 Dh80)

	2000	2012	2020	2030
Agriculture (y compris pêche)	180	144	159	151
Industrie (Y compris BTP)	226	211	158	110
Services (Transport + Tertiaire)	139	131	190	87
Intensité globale	218	207	186	165


INTENSITE DE Co2/Secteur économique (En Tonne Co2/1000 Dh80) (Scénario "Bas Laisser Faire")

Scénario Bas Maitrise d'énergie :

Tonne Co2/1000 Dh80	2000	2012	2020	2030
Agriculture (y compris pêche)	180	142	206	136
Industrie (Y compris BTP)	226	198	131	75
Services (Transport + Tertiaire)	139	131	190	87
Intensité globale	218	193	210	126

