

Capgemini invent France Energie Eolienne

Analyse du marché, des emplois et des enjeux de l'éolien en France

Septembre 2021

ANNEXES CHALLENGES LES EMPLOIS LE MARCHÉ LES APPORTS INTRODUCTION

Pourquoi développons-nous l'énergie éolienne en France?

La virulence du débat autour de ce symbole de la transition écologique demande de revenir aux fondamentaux.

Ma réponse est simple : le dérèglement climatique.

Il est évidemment hors de question de miser à l'avenir sur des énergies fossiles pour produire notre électricité. C'est bien pour cela que la France ferme ses dernières centrales à charbon.

Il est également impossible de nous contenter de nos sources de production électrique actuelles. Si nous voulons nous passer des énergies fossiles qui constituent encore les deux-tiers de notre consommation d'énergie finale, il faut électrifier massivement nos usages : transports, logements, processus industriels... Même si nous intensifions nos efforts d'économies d'énergie, la demande en électricité va donc inévitablement croitre dans les années à venir et impliquera d'augmenter rapidement nos capacités de production pour préserver notre souveraineté énergétique.

Il est enfin déraisonnable d'imaginer miser sur le seul nucléaire. Au-delà des débats inhérents à ce mode de production, nos besoins en énergie décarbonée sont immédiats, or le temps de construction d'une centrale nucléaire de nouvelle génération se mesure à l'échelle d'une décennie. Nous devons également anticiper la fin de vie d'un certain nombre de réacteurs. Une politique énergétique réaliste passe donc par le déploiement massif et immédiat des renouvelables, dont l'éolien.

Il n'y a là rien d'idéologique, sauf à penser que la lutte contre le dérèglement climatique et notre sécurité d'approvisionnement en électricité soient secondaires.

La crise sanitaire que nous traversons depuis de nombreux mois a démontré par ailleurs l'importance stratégique d'un mix électrique diversifié pour notre sécurité d'approvisionnement. L'éolien a par exemple contribué à réduire l'impact de l'indisponibilité de plusieurs installations nucléaires dont les opérations de maintenance avaient dû être décalées.

En 2020, l'éolien a ainsi représenté près de 8 % de la production d'électricité nationale, ce qui en fait la 3ème source derrière le nucléaire et l'hydroélectricité. Avec plus de 1 GW de capacité éolienne supplémentaire en 2020, le parc installé atteint ainsi près de 18 GW mi-2021.

Cet essor se traduit en outre par la création d'activité dans notre pays, avec une hausse de 12% des emplois de la filière en France, ce qui représente 2 400 emplois nouveaux créés en 2020, malgré la crise. A ce jour, la filière représente donc 22 600 emplois dans l'hexagone, dont 5 200 pour l'éolien en mer.

Ces atouts de l'éolien, nos concitoyens les connaissent. C'est pour cela qu'ils sont une très large majorité à porter un regard positif sur l'éolien terrestre ¹.

Et c'est justement parce que l'éolien est vital pour notre avenir énergétique et parce que les Français le comprennent qu'il est de notre responsabilité à la fois de combattre les fausses informations propagées à son encontre, mais aussi d'être à l'écoute des préoccupations sincères de certains riverains de parcs.

Avant toute chose, il est important de rétablir les faits et de ne pas verser dans la caricature. C'est pourquoi mon ministère a publié un Vrai/Faux sur l'éolien terrestre, accessible à tous. Certes, les parcs éoliens ne sont pas totalement dénués d'impactaucun mode de production d'énergie de l'est totalement –et c'est d'ailleurs pour cela qu'ils sont soumis à des règles strictes d'implantation, d'exploitation et de démantèlement. Elles ont d'ailleurs été renforcées en 2020, en particulier pour ce qui concerne les exigences relatives au démantèlement. Mais il est faux de dire que l'éolien ne permet pas de lutter contre le dérèglement climatique, qu'une éolienne ne fonctionne que 25 % du temps, qu'elle n'est pas recyclable ou que l'on trouve d'immenses cimetières de pales en France. Nous ne pouvons pas laisser l'opposition à l'éolien se fonder sur de la désinformation.

- 1. Selon le sondage réalisé fin 2020 par Harris Interactive pour France Energie Eolienne, 76 % des Français ont une image positive de l'éolien.
- 2. https://www.ecologie.gouv.fr/sites/default/files/21088_VraiFaux_E%CC%810lien_terrestre%20%281%29.pdf

Bien sûr, le déploiement de l'éolien ne peut se faire sans que les territoires s'emparent pleinement de la transition énergétique. C'est dans cet objectif que le gouvernement a créé, dans la loi Climat et Résilience, les comités régionaux de l'énergie qui seront chargés de favoriser la concertation, en particulier avec les collectivités territoriales, sur les questions relatives à l'énergie au sein de la région, et de définir des objectifs régionaux d'énergies renouvelables. Cette loi renforce aussi le rôle du maire dans la concertation, en imposant que le résumé non technique de l'étude d'impact du projet lui soit adressé préalablement au dépôt de la demande d'autorisation afin qu'il puisse ainsi adresser ses observations au porteur de projet, qui sera tenu d'y répondre.

Pour encourager dès à présent la concertation sur les projets éoliens, j'ai également donné instruction aux Préfets de réaliser une cartographie des zones propices au développement de l'éolien terrestre, de manière concertée avec les élus locaux. J'y souligne la nécessité d'une concertation approfondie avec les habitants, les élus locaux et les associations dès les stades amont des projets, afin de tenir compte des enjeux paysagers et environnementaux dès leur conception. Je tiens à ce que la filière soit exemplaire sur ces aspects, auxquels je suis particulièrement attachée et qui sont des facteurs d'acceptation incontestable des projets.

Le gouvernement a par ailleurs engagé plusieurs actions en faveur d'un développement plus harmonieux et mieux accepté de l'éolien. Ces actions font suite à un Conseil de défense écologique présidé par Emmanuel Macron en décembre 2020. Parmi les différentes décisions prises figurent notamment des mesures visant la réduction des nuisances (renforcement des exigences sur le recyclage, expérimentations en cours sur le balisage lumineux, etc.), la mise en place d'un réseau de conseillers éolien et photovoltaïque dans les territoires dès cet automne afin d'informer et d'apporter un appui technique aux collectivités, et la formalisation d'un guide de bonnes pratiques. Enfin, mon ministère a entamé un travail avec toutes les parties prenantes pour favoriser et simplifier au maximum les montages de projets citoyens.

L'année 2021 marque une nouvelle impulsion pour le développement de l'éolien, avec la publication des cahiers des charges pour la période 2021-2026 et le lancement de la première période du nouvel appel d'offres éolien terrestre. Celui-ci permettra de soutenir la création nette de plus de 9,2 GW de capacité éolienne installée sur 5 ans.

En ce qui concerne plus spécifiquement l'éolien en mer, après une année 2020 marquée par les évolutions apportées par la loi pour l'accélération et la simplification de l'action publique et le lancement de la procédure de mise en concurrence du parc de 1 GW au large de la Normandie, le Gouvernement poursuit résolument l'accélération du développement de cette filière avec la tenue des dialogues concurrentiels pour les parcs de Normandie et de Bretagne Sud et le démarrage des débats publics pour les projets au large de la Méditerranée et d'Oléron.

Nous saisirons prochainement la Commission nationale du Débat public (CNDP) pour organiser une concertation sur un second projet éolien en mer dans la zone définie lors du débat public de 2019-2020 en Normandie.

Les projets éoliens en mer doivent aussi être tout aussi exemplaires et faire l'objet d'une concertation et d'un dialogue avec les parties prenantes durant tout son déroulement, que ce soit en amont de sa décision que lors du déroulement des travaux. C'est à cette condition que nous pourrons favoriser leur essor et leur réussite, et nous engager pleinement dans la transition énergétique vers l'atteinte de la neutralité carbone.

La politique énergétique de notre pays est à un tournant. Les débats que nous connaissons sont liés à ce moment charnière. Dans ce contexte, restons focalisés sur l'essentiel : augmenter dès maintenant notre production d'électricité renouvelable en déployant des projets exemplaires.

Barbara POMPILIMinistre de la Transition écologique

Édito

L'édition 2021 de l'observatoire s'inscrit dans une année charnière puisqu'elle est à la fois la dernière avant la prochaine élection présidentielle et la première qui sera lue par les nouveaux exécutifs régionaux.

Elle s'inscrit également dans un moment où de nombreux travaux nationaux et internationaux (par exemple les rapports RTE, ADEME, AIE, ou le paquet climat de la Commission Fit for 55) démontrent que l'éolien n'est pas une option, mais bien une filière indispensable pour décarboner le mix-énergétique. L'atteinte des objectifs définis par la Stratégie Nationale Bas Carbone (SNBC). à savoir diviser par 6 nos émissions de qaz à effet de serre d'ici 2050 par rapport à leur niveau de 1990, impliquera notamment la disparition des énergies fossiles de notre consommation d'énergie (énergies fossiles qui représentent encore auiourd'hui environ 70% de notre consommation d'énergie). Où en sommes-nous de cette traiectoire? La production d'électricité d'origine éolienne représente désormais 9% de la production totale d'électricité en France. L'éolien est ainsi depuis 2020, la 3ème source de production d'électricité en France derrière le nucléaire et l'hydraulique.

Ces résultats, acquis après 15 ans d'un important travail conduit par les 900 entreprises de la filière implantées en France, confirment la solidité de nos fondamentaux aussi bien en terme de compétitivité que de capacités industrielles.

En terme de compétitivité, la tendance à la baisse des coûts de production de l'électricité d'origine éolienne se mesure à travers les prix des appels d'offre tant sur l'onshore (60,8€ / MWh1) que sur l'offshore (44 € / MWh2). Cette tendance à la baisse donne un avantage compétitif à la filière éolienne par rapport à des filières historiques dont les coûts de production sont sur des tendances haussières (ex : entre 110 et 120 € / MWh pour le nouveau nucléaire). Du côté des capacités industrielles, la filière a démontré son savoir-faire en installant à un rythme régulier, y compris en période de pandémie mondiale, de nouveaux parcs de production d'électricité d'origine éolienne. Tous les acteurs qui composent la chaine de valeur (études et développement, fabrication de composants, ingénierie de construction, exploitation et maintenance) sont ainsi prêts à délivrer chaque année les 1900 MW d'éolien terrestre et les 1 000 MW d'éolien en mer qui doivent être installés d'ici 2028. pour sécuriser l'approvisionnement énergétique du pays et atteindre les obiectifs nationaux et internationaux de la France (ex : PPE. SNBC. COP 21). La solidité de ces fondamentaux est le fruit d'un travail concerté et régulier des entreprises de la filière installée en France. Ces fondamentaux se traduisent par des retombées économiques et sociales importantes : 2400 emplois créés en 2020, plus de 22 600 emplois au total en

France (l'éolien est désormais le 1er employeur

du secteur des énergies renouvelables), plus de 220 M€ de retombées fiscales locales qui vont majoritairement aux petites communes de moins de 100 habitants et qui leur sont précieuses pour redynamiser leur territoire en rendant possible des investissements publics locaux

(ex : réfection d'une salle de cantine, création d'une micro-crèche, rénovation des bâtiments publics). C'est donc naturellement que la filière éolienne, devenue incontournable, aborde le second semestre 2021 en prenant part au débat et en formulant des propositions pour 2022 qui permettront à chacun de connaître la vision que porte la filière sur les défis sociétaux (ex : emplois. formation, indépendance, sécurité. réindustrialisation, lutte contre les inégalités) et sur les solutions proposées pour accompagner la France dans la transition énergétique.

Nous vous souhaitons une bonne lecture!

Nicolas Wolff.

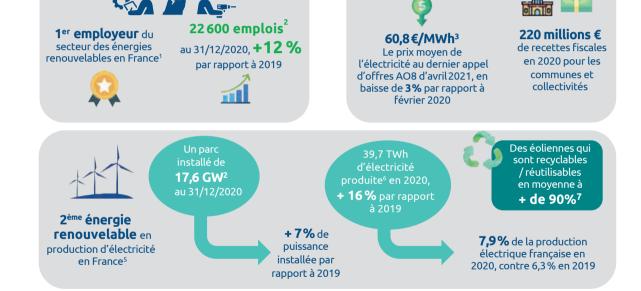
Président de France Eneraie Eolienne

Cécile Maisonneuve Cado,

Présidente de la Commission Industrie de FFF

1. AO8 Juillet 2021

2. Délibération de la CRE du 6 juin 2019 relative à l'instruction des offres remises dans le cadre du dialoque concurrentiel n°1/2016 portant sur des installations éoliennes de production d'électricité en mer dans une zone au large de Dunkerque - CRE



Résumé à l'intention des décideurs

INTRODUCTION

Grands chiffres-clés 2020

1. Latribune.fr / 2. Etude FEE, 2021 / 3. Dernier appel d'offre, Avril 2021, greenunivers.com / 4. Calculé sur la base d'un niveau moyen de recettes fiscales de 12500€ par MW installé / 5. Statistiques.développement-durable.gouv.fr / 6. RTE: Bilan électrique 2020 français / 7. https://www.francetvinfo.fr/economie/energie/temps-de-fonctionnement-et-recyclage-

des-eoliennes-qui-dit-vrai-entre-barbarapompili-et-stephane-bern 4649343.html

Les apports de la filière en France en 2020

Des apports économiques qui bénéficient à tous

220 M€ de recettes fiscales en France en **2020**¹

Des impôts locaux qui n'augmentent pas ou qui baissent dans les communes accueillant un ou plusieurs parcs éoliens

Une filière qui contribue à la ré-industrialisation nationale

5,8 mds d'€ de chiffres d'affaires en 2019, uniquement pour l'on-shore²

768 Millions d'€ d'exportations en équipements et en ingénierie²

5 des 13 unités européennes de production d'équipements offshore sont situées en France

Une adhésion massive des citoyens

76% des Français³ ont une bonne image de l'énergie éolienne **(+3%)**

102,4 M€ collectés en crowdfunding pour financer les ENR en 2020⁴

Le Gouvernement travaille à l'élaboration d'une feuille de route pour généraliser le principe de gouvernance partagée (participation citoyenne)

Des bénéfices majeurs pour les services publics

L'installation de parcs éoliens permet aux communes rurales de contribuer significativement à l'amélioration de plusieurs services publics tels que :

- La réfection de routes
- La construction / rénovation de lieux culturels et touristiques
- La mise en place de la fibre optique
- La rénovation de l'éclairage public

^{4.} https://www.greenunivers.com/2021/04/en-2020-le-financementparticipatif-des-enr-a-depasse-les-100-me-258108/

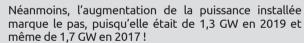
^{1.} Estimation basée sur une movenne de 12 500€ / MW installé

^{2.} Source : Ademe – Etude Marché de l'éolien 2021

^{3.} Source: Etude Harris Interactive pour FEE, Janvier 2021

Le marché de l'éolien en France en 2020

17,6 GW¹ de puissance cumulée


+ 7% de puissance installée par rapport à 2019

1,3 GW¹ de capacité éolienne installée et raccordée en 2020

Soit l'équivalent de la consommation électrique d'environ 8 millions de foyers

Avec 1,3 GW de capacité éolienne supplémentaire, la puissance cumulée effective se hisse à 17,6 GW à fin 2020. Une augmentation de 8% qui permet à l'énergie éolienne de représenter 7,9% du mix électrique français.

En effet, si la filière a su montrer sa résilience face à la pandémie puisque le volume d e production d'électricité à partir d'énergie éolienne est en augmentation de 17% (39, 7 TWh), les procédures d'autorisation des projets en cours, ont accusé des retards significatifs dans leur délivrance, en décalage avec les traiectoires de la PPE.

7,9%³ de la production d'électricité en France provient de l'éolien

39,7 TWh d'électricité produite à partir d'énergie éolienne soit 17,3 % de plus qu'en 2019⁴.

(consommation électrique d'environ 1,5 millions de foyers)

Présentation de la filière

Aperçu de la chaîne de valeur de la filière éolienne

Jusqu'à 70% de la valeur d'une éolienne est acquis en Europe, preuve que la filière est bien ancrée sur le continent.

Source : ADEME - Etude sur la filière éolienne française : bilan, prospective et stratégie * Les entreprises spécialisées uniquement sur ce maillon n'ont pas été comptabilisées

La place de l'éolien dans le mix électrique français en 2020

L'éolien a représenté en 2020, 7,9 % de la production d'électricité française, avec un taux de croissance important : +17,3 % entre 2019 et 2020

Nucléaire 335,4 TWh - 11,6%

Hydraulique 65.1 TWh

Folienne 39,7 TWh + 17.3% +8,4%

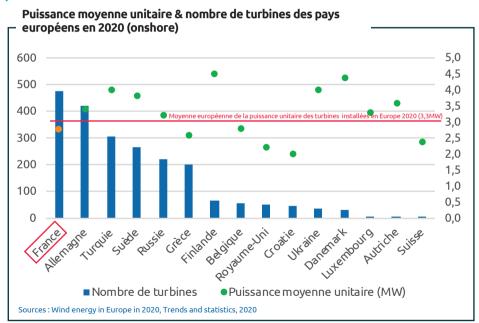
Solaire

12,6 TWh + 2,3%

Bioénergies **9,6 TWh** - 0.8%

37,6 TWh - 10,6 %

■ Nu déaire (67,1%) Hydrauli gu e (13%) ■ Gaz (6,9 %) ■ Eolien (7.9%) Solaire (2.5%) Bio éner gie (1,9%) ■ Charbon (0,27%) Pétrole (0.35%)


Avec plus de 17% d'augmentation en production par rapport à 2020 en France, l'éolien est l'énergie qui présente le taux de croissance le plus élevé. Si ce chiffre est satisfaisant, il faut néanmoins le pondérer compte tenu du contexte de pandémie où la production d'électricité était plus faible qu'habituellement.

Source: RTE Bilan électrique 2020

Des technologies terrestres qui poursuivent leurs évolutions

La France installe le plus de turbines en Europe mais la puissance installée est plus faible

La puissance unitaire des éoliennes installées en France en 2020 est parmi les plus faibles du continent européen (2,7 contre 3,3 MW) alors que c'est la France qui a installé le plus grand nombre d'éoliennes en 2020 (477).

Cela s'explique par des contraintes règlementaires fortes qui se sont renforcées en 2021, et qui limitent le potentiel de réduction des coûts de l'énergie éolienne en France.

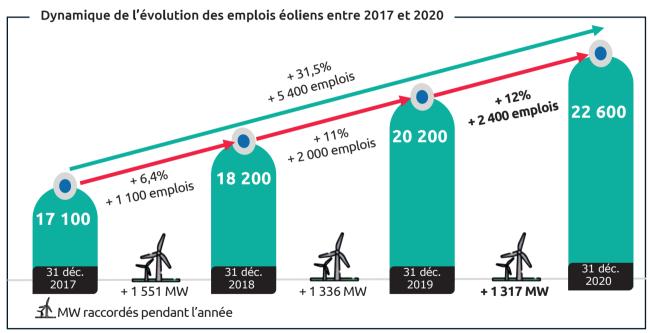
Pourtant, des éoliennes plus grandes, et donc plus puissantes, permettraient de réduirelenombre de turbines installées et le coûtde l'électricité pour la collectivité.

Les emplois éoliens en France en 2020

Etudes et Exploitation et Développement Maintenance-**/+21% /+8%** 19% 33% 18% Fabrication de Ingénierie et composants 29% Construction **/** +2% **+12%**

En 2020, les emplois de la filière ont continué de croître à un rythme important puisque le taux de croissance atteint les 12%, avec un total de 22600 emplois directs et indirects en France au 31 décembre 2020.

Si la pandémie n'a pas atteint la dynamique globale, elle a malgré tout pesé sur les autorisations délivrées pour la construction des parcs et a mécaniquement freiné la croissance dans les activités liées à l'exploitation et la maintenance et surtout à celles liées à la fabrication de composants. Pour cette dernière catégorie, c'est l'offshore qui permet de maintenir la croissance.


Comme en 2019, c'est l'éolien en mer qui booste la croissance des emplois de la filière française. Le démarrage de la construction des parcs de Saint Nazaire, de Fécamp et de Saint-Brieuc explique largement cette tendance. Avec plus de 20% des emplois recensés, l'éolien en mer représente environ 5200 emplois en 2020. La croissance devrait se poursuivre avec la création d'emplois offshore en Normandie (pôles industriels du Havre et de Cherbourg).

X% Taux de croissance par maillon de la chaîne de valeur (2019-2020)

La croissance de l'emploi éolien en France en 2020

Le nombre d'emplois éoliens continue à augmenter pour la 7^{ème} année consécutive

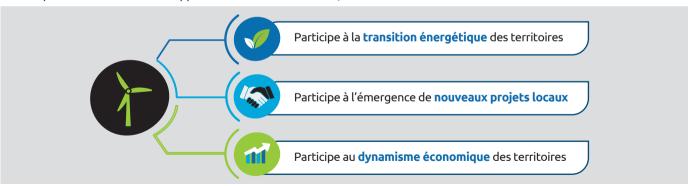
Capgemini invent France Energie Eolienne

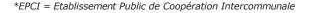
Sommaire

Les apports de la filière éolienne à la société française				
a. Les retombées économiques et fiscales pour les collectivités locales	p. 20			
b. Le développement des services publics	p. 23			
c. Consolider l'industrie sur le territoire national	p. 25			
d. L'adhésion des français à l'éolien	p. 27			
Le marché de l'éolien en France en 2020				
a. Faits marquants et chiffres-clés	p. 30			
b. Bilan du marché de l'éolien	p. 32			
c. Le marché de l'éolien dans le contexte européen	p. 37			
d. La place de l'éolien dans le mix électrique français				
e. L'évolution des technologies terrestres	p. 40			
f. L'éolien en mer	p. 45			
Les emplois dans l'éolien en 2020				
a. Faits marquants et chiffres-clés	p. 58			
b. La dynamique de l'emploi sur le territoire	p. 59			
c. La répartition des emplois éoliens par région	p. 62			
d. La formation	p. 64			
e. Focus sur l'Observatoire des énergies de la mer	p. 73			
f. L'animation de la filière	p. 77			
Capgen	invent France Energie Eolienn			

Sommaire

Les challenges de l'éolien d'ici à 2030				
 a. La filière éolienne prête à bâtir un Wind Deal b. Intégration dans le réseau c. L'intégration dans le réseau – Focus RTE/AIE d. L'intégration dans le réseau – Focus innovation e. L'intégration dans le réseau – Focus formation f. Les enjeux de la flexibilité g. La recherche & développement h. Couplage avec le stockage i. Respect de la biodiversité j. L'économie circulaire 	p. 81 p. 82 p. 90 p. 94 p. 102 p. 104 p. 107 p. 109 p. 110 p. 112			
<u>Annexes</u>				
 a. Cartes de l'implantation du tissu éolien en régions b. Cartes d'identité des acteurs éoliens par catégorie c. Apports de la filière – témoignages d'élus d. Répartition des emplois par région et par maillon de la chaine de valeur e. Formation f. L'animation de la filière 	p. 118 p. 131 p. 138 p. 143 p. 150 p. 153			

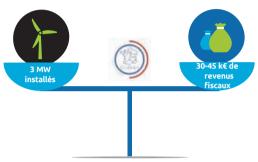



Les retombées économiques et fiscales pour les collectivités locales

L'éolien participe à l'activité et à l'attractivité économiques des territoires...

Au sein des territoires, l'éolien constitue un catalyseur pour la transition énergétique des régions. De nombreuses collectivités (Communes, EPCI* à fiscalité propre, Départements, Régions) se mobilisent pour le développement de cette technologie. Acteurs privés ancrés dans les territoires, syndicats d'énergie, entreprises locales de distribution et élus locaux s'engagent pour permettre l'implantation réussie des parcs éoliens afin d'en faire des signaux forts, modernes et emblématiques du dynamisme local.

De même, le développement d'un parc éolien sur un territoire permet souvent l'émergence de projets locaux porteurs d'avenir: chaufferies au bois, réhabilitation des bâtiments publics et touristiques, réfection des routes, maintien de services publics, mise en place de circuits courts d'approvisionnement alimentaire, etc...



Les retombées économiques et fiscales pour les collectivités locales

... et contribue aux budget des collectivités

En tant qu'activité économique, une installation éolienne génère différents revenus fiscaux, au titre notamment des taxes foncières, de la Cotisation Foncière des Entreprises, de la Cotisation sur la Valeur Ajoutée des Entreprises et de l'Imposition Forfaitaire sur les Entreprises de Réseaux. Ces revenus fiscaux sont de l'ordre de 10 à 15000 euros par MW et par an (en moyenne 7500€ pour le bloc communal et 4500€ pour le bloc des collectivités), qui sont redistribués entre les différentes collectivités en fonction principalement du régime fiscal de l'établissement public de coopération intercommunale auguel appartient la commune d'implantation.

Zoom sur l'IFFR

Le produit de l'IFER est réparti entre la commune d'accueil, le département et l'Etablissement Public de Coopération Intercommunale (EPCI), une structure administrative regroupant plusieurs communes. En fonction de l'appartenance ou non de la commune à un EPCI (selon le choix de fiscalité locale), la répartition du fruit de l'IFER est différente :

	Commune isolée	EPCI à fiscalité additionnelle (FA)	EPCI à fiscalité professionnelle de zone (FPZ)	EPCI à fiscalité éolienne unique (FEU)	EPCI à fiscalité professionnelle unique (FPU)
Composantes de l'IFER relatives aux éoliennes	20% Commune 80% Département	20% Commune 50% EPCI 30% Département			EPCI artement

Les retombées économiques et fiscales pour les collectivités locales

Des retombées fiscales conséquentes qui permettent aux communes de diminuer les impôts locaux, d'emprunter de l'argent ou de financer des projets

(Vendée)

"Avec les 2 parcs éoliens, c'est environ 200 000 € par an qui reviennent à la communauté de commune de Benet chaque année."

« Cela faisait 15 ans que la commune souhaitait réaménager le centre-bourg et sécuriser la route, les revenus issus des éoliennes nous ont enfin permis de le faire »

Armelle Devillard, Mairesse de La Chapelle-au-Mans (Saône et Loire)

Jean-Louis Portal, Maire d'Ally (Haute-Loire)

"Depuis l'installation du parc, nous n'avons plus de problème à emprunter de l'argent auprès des banques. Cela nous permet de produire une énergie propre tout en ayant une sécurité financière utile pour le développement de la commune et ses environs"

Exemples de retombées fiscales

Nombre d'éoliennes	Ressources fiscales moyennes (€/an)*	Répartition**		
7 5	125 000 €	 Communes/EPCI : 85 375€ Département : 35 250€ Région : 4 375€ 		
7 10	250 000 €	 Communes/EPCI : 170 750€ Département : 70 500€ Région : 8 750€ 		
111 15	375 000 €	 Communes/EPCI : 256 125€ Département : 105 750 € Région : 13 725€ 		

Ces revenus générés par l'installation et l'exploitation de parcs sur le territoire sont de longue durée : en moyenne 20/25 ans

^{*} Estimation de 12 500€/MW / ** Répartition selon la norme IFER

Le développement des services publics

Les recettes fiscales obtenues avec les éoliennes permettent de contribuer à l'amélioration des services publics de différentes façons

Améliorations des services de santé

Construction ou réfection des infrastructures

Création de structures sociales

Le financement de maisons médicales dans la commune intégrant médecins, infirmiers, kinésithérapeutes, podologues, etc. – (Miraumont | Somme)

Construction et gestion d'une crèche – (Saint-Etienne-de-Lugdarès | Ardèche)

« L'accueil de nouveaux médecins a permis d'améliorer les conditions de vie de nos administrés » (Benet | Vendée)

Entretien de l'église classée monument historique -(Savières | Aube)

Création de logements accessibles aux personnes à mobilité réduite – (Dampierre-sur-Moivre | Marne)

Ouverture d'une maison des associations avec bibliothèque et médiathèque – (Avignonet-Lauraaais | Haute-Garonne)

La commune fait vivre un foyer de vie pour 61 personnes handicapées - (Saint-Etienne-de-Lugdarès | Ardèche)

Sources: « Paroles d'élus », France Energie Eolienne

Capgemini on invent

Le développement des services publics

Les parcs éoliens peuvent contribuer de manières diverses au développement du tourisme dans les territoires

Répovation de monuments à des fins de logements touristiques

- Grâce aux retombées fiscales des éoliennes, la ville d'Ally (Haute-Loire) a eu l'occasion de **réhabiliter 3 anciens moulins** que l'on peut visiter et dont certaines parties ont été transformés en gîtes habitables
- Rénovation d'une mine d'antimoine (élément métallique) dans la ville d'Allv pour y accueillir des visiteurs

- · La ville de Fitou, dans l'Aude, a pour projet de réhabiliter une ancienne usine Lafarge pour créer un lieu associant tourisme et énergies renouvelables
- · Chaque année, la ville d'Ally accueille des classes vertes lors de voyages scolaires sur le thème des énergies renouvelables

- Sainte-Colombe dans l'Yonne Aménagement de sentiers de randonnées autour des parcs pour allier sport et énergies renouvelables
- Dans la Somme, l'éolien a permis la création d'un chemin de randonnée de 20 km autour des éoliennes et des panneaux d'information sur la biodiversité

Sources: « Paroles d'élus », France Energie Eolienne

Consolider l'industrie sur le territoire national

La filière éolienne, contribue significativement et de manière croissante au secteur industriel français

Le marché de l'éolien en forte croissance...

Le chiffre d'affaires du secteur de l'énergie éolienne croît de manière continue : en 2019, il représentait **5,8 Milliards d'euros**, soit deux fois plus qu'en 2013.

Pour comparaison:

C'est environ 2 fois plus que le chiffre d'affaire de l'industrie du petit électroménager en France qui représente **3,7 milliards d'euros** en 2020

Usine LM Wind Power à Cherbourg (Manche) Photo : LM Wind Power

Sources : ADEME, CNEF

... grâce à un savoir-faire français très développé

Ce savoir faire français s'exprime notamment par la présence de **5 des 13 unités** européennes de production d'équipement d'éoliennes en mer.

En 2019, le chiffre d'affaire des exportations en équipement et en ingénierie s'élevait à **768 millions d'euros**.

Certaines entreprises présentes sur le territoire sont des leaders mondiaux dans la fabrication de composants comme par exemple Rollix pour les roulements et Schneider Electric pour les équipements électriques.

Capacini invent France Energie

Consolider l'industrie sur le territoire national

La filière éolienne est créatrice de nombreux emplois locaux et nondélocalisables en lien avec la création d'entreprises spécialisées dans la fabrication de pièces d'éoliennes

Une grande partie de l'activité générée par le secteur de l'éolien se fait directement sur place et permet donc la création d'emplois non-délocalisables en régions et de longue durée.

L'essor de l'éolien entraine la création d'entreprises spécialisées et innovantes. C'est par exemple le cas d'Avent Lidar Technology, spécialisée dans la fabrication de composants technologiques (ex. méthode par lidars) pour la mesure du vent.

Les emplois liés à l'ingénierie et à la construction sont en forte croissance (+14 % en 2020). Cette dynamique majeure permet de penser que le poids de l'industrie éolienne va continuer de s'accroître en France.

Aujourd'hui, l'offshore porte principalement cette croissance des emplois. Celle-ci est notamment portée par les énormes investissements dans l'industrie éolienne offshore qui sont en augmentation. Au 1^{er} semestre 2020 ces investissements représentaient 35 Milliards \$ dans le monde, soit une croissance de 319 % sur un an.

L'adhésion des Français à l'éolien

75% des Français vivant à proximité des parcs ont un sentiment positif à l'égard de l'énergie éolienne (+3 % par rapport à 2018)

79% des Français considèrent que l'éolien a un rôle important à jouer dans la transition énergétique

2 Français sur 3 estiment que l'installation d'un parc à proximité de chez eux serait une bonne chose

91% des 18-34 ans ont une bonne image de l'énergie éolienne

+ de 85 % des Français considèrent que l'éolien est une source d'énergie propre et inépuisable

Sources: Harris Interactive, 2020; GreenUnivers - « Baromètre du financement participatif des EnR », Baromètre IRSN 2020

L'adhésion des Français à l'éolien

Les projets de production d'énergie renouvelable impliquant les citoyens aux décisions et aux investissements se multiplient en France

Il existe en France plus de 200 projets de production d'énergie fondés sur une implication durable des habitants* et des collectivités locales dans leur gouvernance et leur financement.

Cette énergie citoyenne, décidée, financée et produite en circuit-court par les habitants met en valeur les ressources naturelles locales du territoire. Elle permet également d'accroître l'adhésion des citoyens au projet et aux enieux de la transition énergétique.

Ainsi, le gouvernement travaille actuellement, en partenariat avec la FEE, à l'élaboration d'une feuille de route pour encourager cette implication citovenne, notamment à travers le principe de gouvernance partagée des projets éoliens.

En France, 102,4 M€** ont été collectés en crowdfunding pour financer les ENR en 2020

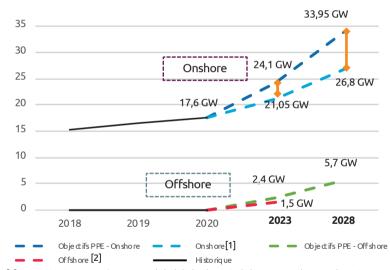
*https://www.ecologie.gouv.fr/developpement-des-energies-renouvelables-barbarapompili-visitera-parc-eolien-citoyen-lhyrome-dans **https://www.greenunivers.com/2021/04/en-2020-le-financement-participatif-des-enr-

adepasse-les-100-me-258108/

30

Le marché de l'éolien - Introduction

Le marché de l'éolien français joue un rôle majeur dans l'atteinte de la neutralité carbone et doit accélérer pour atteindre les objectifs de la PPE


L'objectif de neutralité carbone de la France en **2050 a été précisé par** la PPE publiée en avril 2020. Elle fixe les objectifs de transition énergétique du pays jusqu'en 2028 avec une augmentation de la capacité de l'énergie éolienne de 45% en 3 ans pour atteindre 24.1GW.

Or avec seulement 1105 MW raccordés en 2020 et un cumul de 17,6 GW, la France ne parvient pas à atteindre le rythme de croisière qu'elle s'est fixée, à savoir une augmentation annuelle de sa capacité éolienne installée de 2000 MW.

Dans le même sens, l'objectif de 34 GW de capacité cumulée raccordée en 2028 semble également difficile à atteindre, eu égard aux contraintes règlementaires qui pèsent toujours sur le secteur et de l'impact de la crise sanitaire sur les mises en service. Ce constat est d'autant plus regrettable que la France est le pays européen avant mis en service le plus d'éoliennes en 2020.

L'éolien en mer ne fait pas exception puisque dans le meilleur des cas, seul 1,5 GW devrait être installé d'ici à 2023 contre 2.4 GW prévus initialement dans la PPE.

Objectifs de capacité installée en GW vs. les objectifs de la PPE-

[1] Les projections 2023 & 2028 ont été réalisées à partir de la movenne des taux de croissance des années précédentes / [2] La projection 2023 a été réalisée à partir du planning d'installations des parcs offshores en cours de réalisation

Source: Décret d'application de la PPE, publié au JO le 23/04/2020 + SDES 2020 PPE : Programmation pluriannuelle de l'énergie

17.6 GW1 de puissance

+ 7% de puissance installée par rapport à 2019

1.3 GW¹ de capacité éolienne installée et raccordée en 2020

Soit l'équivalent de la consommation électrique d'environ 8 millions de fovers

Avec 1,3 GW de capacité éolienne supplémentaire, la puissance cumulée effective se hisse à 17.6 GW à fin 2020. Une augmentation de 8% qui permet à l'énergie éolienne de représenter 7.9% du mix électrique français.

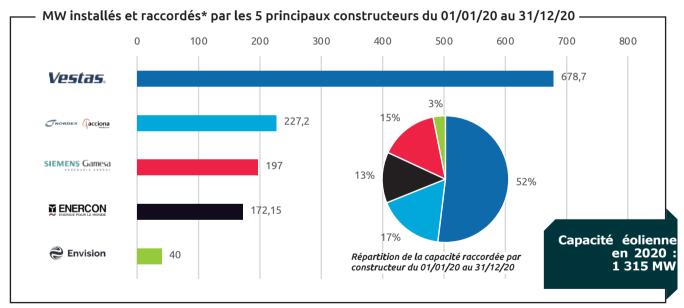
Néanmoins, l'augmentation de la puissance installée marque le pas, puisqu'elle était de 1,3 GW en 2019 et même de 1.7 GW en 2017!

En effet, si la filière a su montrer sa résilience face à la pandémie puisque le volume d e production d'électricité à partir d'énergie éolienne est enaugmentation de 17% (39, 7 TWh), les procédures d'autorisation des projets en cours, ont accusé des retards significatifs dans leur délivrance, en décalage avec les trajectoires de la PPE.

7.9%3 de la production d'électricité en France provient de l'éolien

39.7 TWh d'électricité produite à partir d'énergie éolienne soit 17.3 % de plus au'en 20194.

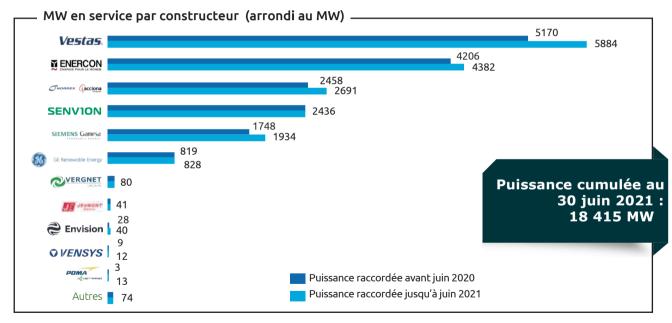
de puissance pour les proiets éoliens offshore lauréats d'appels d'offres / à projets


(consommation électrique d'environ 1,5 millions de foyers)

1. Etude FEE 2021 / 2. Observatoire des énergies de la mer 2021 / 3. Rapport RTE, Bilan électrique 2020 de RTE / 4. RTE Bilan électrique 2020

Bilan du marché de l'éolien

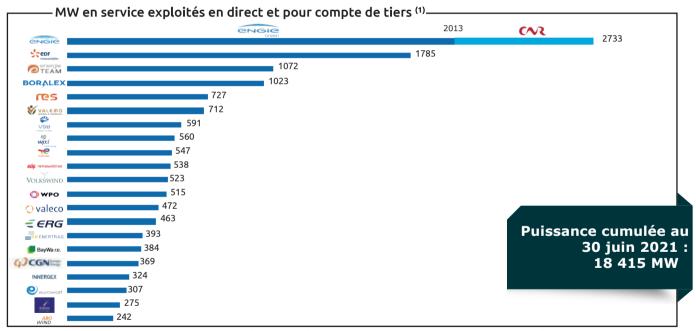
1,3 GW de capacité éolienne installée en France en 2020



Source: Etude FEE, 2021

^{*} Les données d'installation et de raccordement peuvent différer des données reportées par RTE en raison d'écart de traitement des contrats de raccordement

La puissance cumulée en service en France au 30 juin 2021 est de 18,4 GW



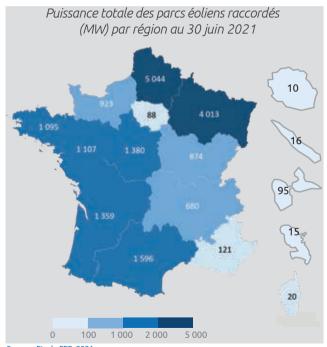
Source: Etude FEE, 2021

Capgemini invent

Bilan de la puissance raccordée

19 exploitants gèrent chacun plus de 300 MW de capacité éolienne

Source: Etude FEE, 2021


💦 les MW sont exploités à hauteur de 502 MW par Energieteam et 128 MW par Engie Green, le reste par des tiers.

(1) Données issues de la base de données FEE au 30/06/2021; chiffres arrondis à l'unité; Les données du second semestre sont consolidées sur le semestre suivant

35

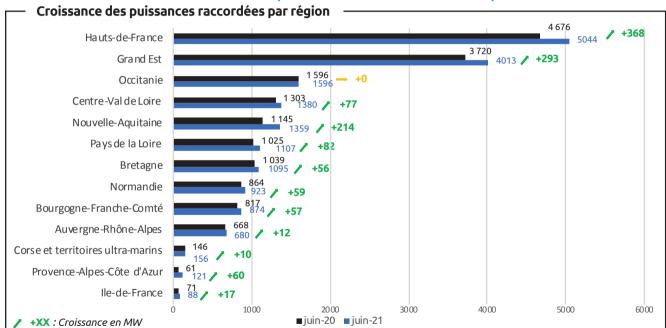
La répartition actuelle des MW installés atteste de la dominance des régions du Nord-Est et de l'Ouest

Les capacités éoliennes sont réparties sur l'ensemble du territoire français. avec plus de 1 550 parcs comptant 8905 éoliennes, implantés dans l'ensemble des régions métropolitaines ainsi qu'en Outre-Mer.

Les Hauts-de-France et le Grand Est sont les premières régions éoliennes. Ces 2 régions représentent à elles seules 50% de la puissance raccordée en France. L'Occitanie. berceau historique de l'éolien en France, occupe quant à elle la 3^{ème} position au niveau national.

D'autres régions poursuivent leur progression. A titre d'exemple, la Nouvelle-Aquitaine a raccordé plus de **200 MW** entre juin 2020 et juin 2021.

La région Grand Est passe ainsi le cap des 4 gigawatts d'éoliennes installées, preuve du développement harmonieux de la filière en cours sur l'ensemble du territoire.


7 régions sur 13 comptent plus de **1 000 MW** de puissance éolienne raccordée sur le réseau à fin juin 2021

Capgemini invent

Source: Etude FEE, 2021

Bilan du marché de l'éolien par région

Bien que la puissance raccordée augmente partout en France, c'est dans les Hauts-de-France et le Grand Est que la croissance reste la plus forte

Capgemini on invent

Bilan du marché

L'Europe de l'éolien poursuit sa croissance, avec des stratégies différentes entre

l'onshore et l'offshore selon les pays

Zoom sur les 15 pays avec les plus arandes puissances raccordées fin 2019

	Pays	Puissance cumulée à fin 2019 (MW)	Dont puissance offshore à fin 2019 (MW)	Croissance 2019 – 2020*	Puissance cumulée à fin 2020 (MW)	Dont puissance offshore à fin 2020 (MW)	% mlx électrique 2020
1	Allemagne	61 357	7 445	+ 1 270	62 627	7 689	27%
2	Espagne	25 808	5	+ 1 456	27 264	5	22%
3	Royaume-Uni	23 515	9 945	+ 652	24 167	10 428	27%
4	France	16 646	2	+ 1 303	17 949	2	9%
5	Italie	10 512	0	+ 340	10 852	0	7%
6	Suède	8 985	192	+ 1 007	9 992	192	20%
7	Pays-Bas	4 600	1 118	+ 2 184	6 784	2 611	12%
8	Pologne	5 917	0	+ 697	6 614	0	9%
9	Danemark	6 128	1 703	+ 52	6 180	1 703	48%
10	Portugal	5 437	8	+ 49	5 486	25	25%
11	Belgique	3 879	1 556	+ 840	4 719	2 261	14%
12	Irlande	4 155	25	+ 196	4 351	25	38%
13	Grèce	3 576	0	+ 537	4 113	0	15%
14	Autriche	3 159	0	+ 51	3 210	0	12%
15	Roumanie	3 029	0	0	3 029	0	12%

Sources: WindEurope, «Wind energy in Europe in 2020», 2020, IEA et énergéticiens nationaux * : Les données de croissance de MW en France présentées par windEurope diffèrent de celles présentées par la FEE car elles sont issues d'une méthode de calcul différente.

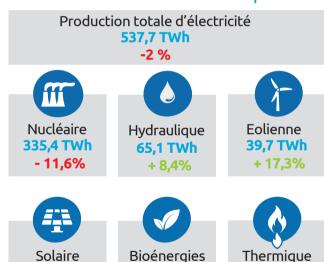
Malgré sa superficie importante, la France possède une puissance installée qui ne représente qu'un tiers de celle de l'Allemagne. L'énergie éolienne contribue, selon WindEurope, à hauteur de 16% au mix électrique européen alors qu'elle ne représente ainsi que 9 % du mix électrique français.

Sources : Euractiv, « Electricité dans l'UE : la part de l'éolien à 16% en 2020, malgré le Covid-19 »

< 10% Stable / > 10%

L'Europe de l'éolien poursuit sa croissance, avec de fortes disparités selon les pays. La France est le 4^e pays éolien en Europe par sa puissance raccordée

Sources: WindEurope, « Wind energy in Europe in 2019 », 2020, RTE Bilan électrique 2019 *Puissance installée en France selon WindEurope. Le chiffre retenu par la FEE est de 1105 MW.


- En Europe, la puissance éolienne raccordée totale à fin 2020 est de 220 GW dont 195 GW sur terre et 25 GW en mer. Cela représente une augmentation de 15 GW en 2020.
- Cette puissance raccordée a permis de produire 458 TWh d'électricité en 2020 et de couvrir 16% des besoins totaux en électricité de l'Europe.
- Le volume de puissance installée a augmenté de 15GW en 2020, soit une progression de 7% par rapport à 2019. Cette augmentation doit s'accélérer si l'Europe veut atteindre l'objectif de 105 GW supplémentaires entre 2021 et 2025, qu'elle s'est fixée (source)
- Les Pays-Bas sont en tête en termes de capacité raccordé, avec 1 979 MW raccordés en 2020 dont 1 493 MW de capacité offshore. L'Allemagne est en deuxième position avec 1 650 MW de capacité. Cette montée en puissance des Pays-Bas s'explique notamment par l'émergence de parcs éoliens offshore qui contribuent à hauteur de 75% de la puissance raccordée en Europe en 2020.
- L'Espagne est le troisième pays européen avec 1 400 MW raccordés.
- La Suède et la France complètent le classement des pays les plusdynamiques en Europe avec respectivement 1 007 MW et 1 318 MW de nouvelles capacités installées en 2020*.
- La France demeure au quatrième rang européen par sa puissance éolienne totale raccordée, avec 18 GW, loin derrière l'Allemagne qui garde sa première place européenne avec un parc raccordé de 63 GW.

Bilan du marché

39

L'éolien a représenté en 2020, 7,9 % de la production d'électricité française, avec un taux de croissance important : +17,3 % entre 2019 et 2020

9.6 TWh

- 0.8%

■ Nu déaire (67,1%) Hydrauli gu e (13%) ■ Gaz (6,9 %) ■ Eolien (7.9%) Solaire (2.5%) Bio éner gie (1,9%) ■ Charbon (0,27%) 13% Pétrole (0.35%)

Avec plus de 17% d'augmentation en production par rapport à 2020 en France, l'éolien est l'énergie qui présente le taux de croissance le plus élevé. Si ce chiffre est satisfaisant, il faut néanmoins le pondérer compte tenu du contexte de pandémie où la production d'électricité était plus faible qu'habituellement.

Source: RTE Bilan électrique 2020

12,6 TWh

+ 2,3%

37,6 TWh

- 10.6 %

Des technologies terrestres qui poursuivent leurs évolutions

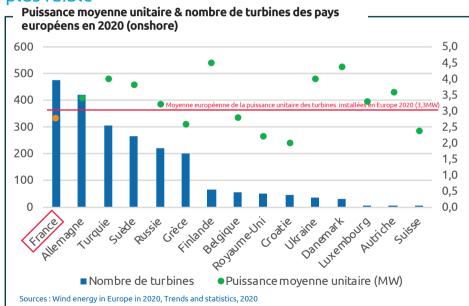
Une éolienne transforme l'énergie cinétique du vent en énergie électrique

Source: Flude FFF

Le vent, une source à maitriser

L'efficacité d'une éolienne dépend de la vitesse et de la fréquence des vents. Un site avec des vents de 30 km/h de moyenne sera environ huit fois plus productif qu'un autre site avec des vents de 15 km/h de movenne. En France, un projet est considéré comme intéressant économiquement si la vitesse moyenne annuelle du site est aux alentours de 21 à 25 km/h.

D'autres critères rentrent aussi en compte comme la nature du sol pour supporter les fondations et la connexion au réseau électrique.


Les éoliennes doivent viser une taille de rotor optimale pour être en mesure de capter un vent puissant et continu.

Plus le diamètre du rotor (5 et 6) est étendu, plus l'énergie captée est importante.

Des technologies terrestres qui poursuivent leurs évolutions

La France installe le plus de turbines en Europe mais la puissance installée est plus faible

La puissance unitaire des éoliennes installées en France en 2020 est parmi les plus faibles du continent européen (2,7 contre 3,3 MW) alors que c'est la France qui a installé le plus grand nombre d'éoliennes en 2020 (477).

Cela s'explique par des contraintes règlementaires fortes qui se sont renforcées en 2021, et qui limitent le potentiel de réduction des coûts de l'énergie éolienne en France.

Pourtant, des éoliennes plus grandes, et donc plus puissantes, permettraient de réduire le nombre de turbines installées et le coûtde l'électricité pour la collectivité.

X MW

Des technologies terrestres qui poursuivent leurs évolutions

La tendance est à l'accroissement de la puissance unitaire des turbines mais celle-ci peine à dépasser la moyenne européenne (3,3 MW)

Turbines les plus installées en 2020

	Modèle	Constructeur	Puissance unitaire (MW)	Taille du rotor / hauteur de mat (France)	Puissance installée (MW)
1	V100	Vestas.	2 à 2,2	100m / 80 à 120m	196
2	SG3.X-132	SIEMENS Gamesa	3 à 3,6	132m / 84 à 97m	133
3	V136	Vestas.	3 à 3,6	136m / 82 à 149m	133
4	N131	Greenex Gacciona	3 à 3,9	131m / 84 à 120m	126
5	V117	Vestas.	3 à 3,6	117m / 80 à 116m	121
6	N117	Commen Gacciona	2,4 à 3,6	117m / 91 à 120m	96
7	V110	Vestas.	2 à 2,2	110m / 80 à 125m	83
8	E92	ENERCON ENERGIE POUR LE MONDE	2,3	92m / 69 à 138m	83
9	E82	ENERCON ENERGIE POUR LE MONDE	2 à 3	82m / 78 à 138m	59
10	V126	Vestas.	3 à 3,6	126m / 87 à 137m	50

Source: Etude FEE, 2021

Bilan du marché

Modèle ayant une puissance unitaire supérieure à la movenne européenne

Des technologies terrestres qui poursuivent leurs évolutions

Les éoliennes les plus installées en France détiennent des puissances et des tailles faibles par rapport aux possibilités offertes par les constructeurs

Turbines les plus installées au 30 juin 2021 (cumul)

	Modèle	Constructeur	Puissance unitaire (MW)	Taille du rotor / hauteur	Puissance cumulée (MW)
1	E82	ENERCON ENERGIE POUR LE MONDE	2 à 3	82m / 78 à 138m	1 699,8
2	V90	Vestas.	2 à 3	90m / 80 à 105m	1 626
3	MM92	SENVION	2,05	92m / 68 à 100m	1 511
4	E70	ENERCON ENERGIE POUR LE MONDE	2,3	71m / 54 à 138m	1 452
5	V100	Vestas.	2 à 2,2	100m / 75 à 120m	1 434
6	N90	THORNEX Gacciona	2,5	90m / 65 à 120m	854
7	N117	CHONDEX Gacciona	2,4 à 3,6	117m / 91 à 120m	720
8	V112	Vestas.	3 à 3,45	112m / 69 à 119m	701
9	N100	THORDEX Gacciona	2,5	100m / 75 à 100m	685
10	MM82	SENVION	2,05	82m / 59 à 100m	572

Source: Etude FEE, 2021

Bilan du marché

X MW

Modèle avant une puissance unitaire supérieure à la movenne européenne

Des contraintes aéronautiques & réglementaires qui s'alourdissent

La dynamique attendue d'augmentation de la puissance installée est freinée

par des restrictions qui viennent s'ajouter à un cadre

déjà contraignant

Les contraintes

rèalementaires

L'implantation d'un parc éolien est soumis à l'autorisation du Ministère des Armées s'il est proche d'un radar militaire.

En outre, les couloirs de navigation militaires empêchent l'implantation d'éoliennes sur près de 50% du territoire. Cela rend difficile d'implanter des éoliennes et *a fortiori* de plus de 150 mètres de hauteur sur une grande partie du pays.

Le développement et le renouvellement des parcs avec des éoliennes de plus grande taille est freinée en France, en raison de contraintes réglementaires qui rendent ce procédé long et complexe. L'administration a de plus en plus recours à des guides qui sont des instruments de « droit mou ».

Exemples de contraintes

En juin 2021, la distance minimale pour l'installation d'une éolienne à proximité d'un radar militaire est passée de 30 à 70 kms. En decà de cette distance, une autorisation du Ministère des Armées est nécessaire.

La partie paysage du quide national relatif aux études d'impacts a été mise à jour en 2020 et génère un alourdissement dans la lecture des recommandations et dans la paysagères par les bureaux d'études spécialisés.

Source: Etude FEE, 2021

L'éolien en mer, une technologie en plein essor

En 2021, la France compte **7 projets lauréats de parcs** éoliens en mer en cours de développement et 4 proiets pilotes flottants. Alors que les premiers chantiers ont démarré en 2019, la filière de l'éolien en mer devrait représenter 10% de la capacité éolienne raccordée en France en 2023.

Le marché de l'éolien en mer est composé de deux segments liés à la distance et au type de fondation :

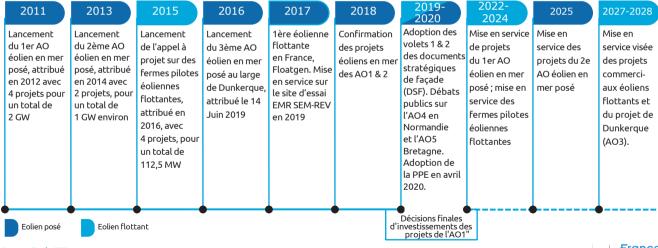
L'éolien en mer posé

Fixes et destinées aux fonds marins jusqu'à 50-60 m, ces éoliennes peuvent exploiter les forts vents marins côtiers.

Puissance unitaire prévue : 6-8 MW (AO1) jusqu'à 12 – 15 MW (AO3)

L'éolien en mer flottant

Avec une fondation flottante, reliée aux fonds marins par des lignes d'ancrage, ces éoliennes peuvent être implantées plus au large, dès 30-50m de profondeur. Puissance unitaire prévue : 8 MW à 10 MW (fermes pilotes)

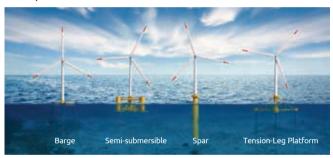

L'éolien en mer devrait représenter 10% de la capacité éolienne raccordée en France en 2023.

Source: Etude FEE

La France fixe une feuille de route pour l'éolien en mer

Avec 3 500 km de côtes, la France métropolitaine dispose du 2ème gisement de vent éolien d'Europe. derrière le Rovaume-Uni et devant l'Allemagne. Pourtant, la France est aujourd'hui moins ambitieuse que ses voisins européens : la PPE publiée en avril 2020 prévoit un objectif de 5,2 à 6,2 GW d'éolien en mer en service en 2028 alors que l'objectif du Gouvernement britannique pour l'éolien en mer est d'atteindre 40 GW en 2030. L'Allemagne devrait dépasser son objectif 2020 fixé à 6,5 GW et table sur 20 GW à horizon 2030 et 40 GW en 2040

Source: Etude FEE



Les atouts de la France dans l'éolien marin sont nombreux : espace maritime, savoir-faire industriel, énergétique et maritime, infrastructures portuaires, réseau électrique maillé

Les éoliennes en mer constituent des technologies de pointe, innovantes et matures, spécifiquement concues pour un milieu marin très exigeant. Plus puissantes que leurs homologues terrestres, les éoliennes en mer exploitent également des vents plus forts et plus réguliers.

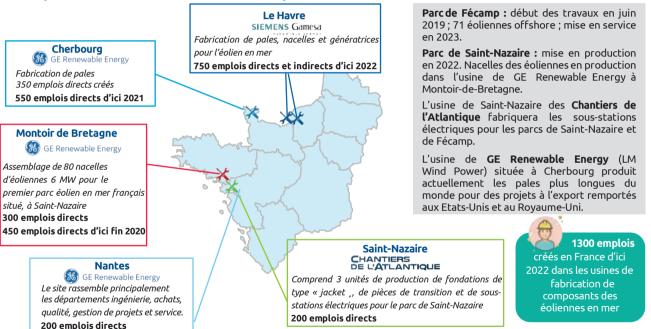
Ces nouvelles installations de production d'énergie renouvelable en mer contribueront d'une part à **concrétiser** les objectifs nationaux en matière de mix énergétique et permettront d'autre part la mise en place d'une filière nationale prenant des parts croissantes sur les marchés à l'international. Plusieurs usines et des centaines d'emplois dédiés à cette filière ont déjà été créés, plusieurs milliers d'autres pourront voir le jour à partir de l'installation et de la mise en service des projets (voir le focus dédié à l'Observatoire des énergies de la mer 2021). La filière table sur 15 000 emplois liés à l'éolien en mer en France en 2030.

Exemples d'installations éoliennes en mer flottantes :

L'éolien posé est la technologie la plus mature et compétitive parmi les EMR avec des projets à des stades avancés. L'éolien posé représente 90 % du chiffre d'affaires de la filière

Source : Etude FEE, Observatoire des énergies de la mer 2021

Après le début des travaux sur Saint-Nazaire, les projets de Fécamp et


Saint-Brieuc sont désormais engagés Dunkeraue Fécamp ~600 MW 71 éoliennes - 497 MW CENDRIDGE Débat public au 2nd semestre 2020 Courseulles-sur-Mer ENHIDIDE SWT-7.0-154 enr Levée des risques en cours, wmi Projet autorisé, chantier en cours **SIEMENS** Gamesa 64 éoliennes - 448 MW Mise en service prévue en 2023 étude d'impact en cours SWT-7.0-154 SIEMENS Gamesa Projet autorisé, chantier en cours SIEMENS Gamesa Saint-Brieuc **SIEMENS** Gamesa SG 8.0-167 DD Dieppe-Le Tréport SG 62 éoliennes - 496 MW 8.0-167 DD Sumitomo Corporation Projet autorisé, chantier en cours 62 éoliennes - 496 MW Mise en service prévue en 2023 Projet autorisé Saint-Nazaire Haliade 150 - 6 MW - cepf 80 éoliennes - 480 MW Projet autorisé, chantier en cours Mise en service prévue en 2022 3,5 GW 11,5 milliards d'euros SIEMENS Gamesa Yeu-Noirmoutier SG 8.0-167 DD Sumitomo Corporation d'investissement 62 éoliennes - 496 MW Proiet autorisé

En Normandie, l'année 2020 a été marquée par la construction et le raccordement du parc de Fécamp. En 2021, le parc de Courseulles a entamé sa construction et devrait être prochainement suivi par celui de Dieppe-Le Tréport. Un nouvel appel d'offres a été déposé pour l'attribution d'un parc éolien en mer de 1000 MW au large du Cotentin.

La région Bretagne accueillera la ferme pilote Eoliennes Flottantes de Groix et Belle-Ile suite à l'appel d'offres lancé début 2021. Ce projet a pour objectif de raccorder 250 MW et a pour vocation d'être étendu à 750 MW les années suivantes.

Sources: Etude FEE, Observatoire des énergies de la mer 2021

La filière industrielle de l'éolien en mer émerge véritablement et est amenée à créer et pérenniser de nombreux emplois directs et indirects en France

Source: Etude FFF

Zoom sur les usines de Cherbourg et du Havre

En novembre 2019, GE Renewable Energy (filiale LM Wind Power) a inauguré son usine à Cherbourg pour la construction de pales destinées à l'éolien en mer. L'usine compte à mi 2020 plus de 300 collaborateurs et a engagé le recrutement de 250 nouveaux emplois d'ici début 2021.

En juin 2020. Siemens Gamesa a démarré la construction de son usine de pales et de nacelles au Havre après avoir recu la confirmation de deux commandes fermes en France (Fécamp et Saint-Brieuc). Cette usine générera **750 emplois** supplémentaires et devrait être opérationnelle au premier semestre 2022.

L'éolien en mer représente une filière industrielle d'avenir, la France détiendra bientôt 1/3 des capacités de production offshore en Europe.

Usine LM Wind Power de Cherboura

La plus grande pale au monde est fabriquée à l'usine LM Wind Power de Cherbourg

Représentation 3D de l'usine Siemens Gamesa Renewable Energy au Havre

L'usine de GE Renewable Energy (filiale LM Wind Power) de Cherbourg a déià fabriqué la plus grande pale jamais réalisée. 107 mètres de long pour **l'éolienne la plus puissante au** monde, l'Haliade-X 12MW, développée par GE Renewable Energy, dont le démonstrateur est installé et en service à Rotterdam pour des tests.

Source: Etude FEE, LM Wind Power

51

L'éolien en mer

220 millions d'euros d'investissement pour l'aménagement du terminal EMR* du port de Brest destiné aux énergies marines renouvelables

L'industrialisation de la filière de l'éolien en mer contribue à des investissements massifs dans certains ports français. En effet, l'assemblage de certains composants se fait à quai. Pour réaliser ces opérations complexes, l'infrastructure portuaire doit être adaptée. Ces investissements s'inscrivent dans une perspective de long terme pour asseoir le savoir-faire de l'industrie française de l'éolien en mer et ainsi consolider son expertise pour exporter les turbines en Europe et dans le monde.

Démarrés en 2017, les travaux du port de Brest visent à créer un polder, étendue artificielle de terrain sur l'eau, de 40 hectares dédié aux énergies marines renouvelables (EMR), comprenant l'éolien en mer (posé et flottant) et l'hydrolien.

Le projet représente un investissement de 220 millions d'euros de la part de la Région Bretagne et de ses partenaires. L'essor du secteur des EMR générerait 400 à 500 emplois directs à la fin des travaux, **prévue en 2024**. La société espagnole Navantia a choisi de s'installer sur le port et mettra en place une unité de préassemblage de fondations « jackets pour le futur parc offshore de la baie de Saint-Brieuc. Ce marché mobilisera 250 emplois directs sur 2 ans.

Outre le port de Brest, les ports de Cherbourg, Le Havre aussi entrepris des investissements et **Saint-Nazaire** ont conséquents dans le développement des EMR sur les façades maritimes. Les ports de Marseille-Fos et de Port-la-Nouvelle autour du bassin méditerranéen empruntent aussi cette voie. La France est très dynamique sur ce secteur d'avenir promis à **une forte croissance** en Europe et dans le monde.

Travaux en cours pour la réalisation d'un polder sur le port de Brest visant à attirer les activités liées aux énergies marines

Source: Etude FEE

* EMR: Energies Marines Renouvelables

252 millions d'euros investis pour l'extension du port de Port-la-Nouvelle notamment destiné aux activités de l'éolien en mer flottant

En 2016, l'Occitanie avait été choisie par l'État comme site favorable pour deux fermes éoliennes flottantes. C'est sur le site du port de Port-La-Nouvelle. 3^{ème} port français de Méditerranée que les éoliennes devraient être assemblées avant d'être installées au large et il sera également utilisé pour la coordination logistique. Sur quatre projets pilotes d'éoliens flottants en France, deux sont au large de Leucate-Barcarès et Gruissan, face au littoral audois. Elles devraient être mises en eau à partir de 2021-2022, pour une phase de test d'environ trois ans.

Les travaux d'extension du port ont été lancés à l'automne 2019. La région Occitanie s'est engagée à investir **252 millions d'euros** dans le projet d'extension qui comprend notamment la création d'un nouveau bassin portuaire et un nouveau quai pour l'éolien en mer.

Ces travaux devraient s'achever en 2023. Au total, pas moins de 3 000 emplois (directs , indirects et induits) seront créés grâce aux activités qui s'implanteront sur le port audois. La première étape de l'agrandissement du port, lancée en septembre 2019, représente déjà 200 emplois équivalents temps plein. Dix entreprises locales ont été retenues pour mener à bien ce projet, et cinq autres entreprises locales sont sous-traitantes.

Pour que l'agrandissement du port soit exemplaire du point de vue environnemental, la Région a mis en place plusieurs instances, notamment un comité scientifique composé d'experts ainsi qu'un comité de suivi environnemental, regroupant collectivités, associations, pêcheurs. Elle a aussi mobilisé plus de 12 millions d'euros au titre des compensations environnementales.

Aménagement du port de Port-la-Nouvelle

Aménagement du port de Port-la-Nouvelle Source : Etude FEE

Optimiser la performance

Ferme pilote Eolmed de Port-La-Nouvelle

Contexte et description du parc ____

Le premier projet d'éolien flottant va naître en **Occitanie** dans la ville de Port-La-Nouvelle avec une mise en service prévue pour l'Automne 2023. Le parc sera équipé de 3 éoliennes de 9,5 MW.

Deux éléments principaux interviennent dans la mise en place de ce parc flottant:

- Les **flotteurs** en acier
- Le **hub** de raccordement

Le fait d'avoir un seul hub de raccordement pour 3 éoliennes présente de nombreux avantages:

- Le **point de raccordement** physique est clairement défini
- Le raccordement des éoliennes se fait en parallèle

Différents acteurs interviennent tout au long de la chaine de valeur*:

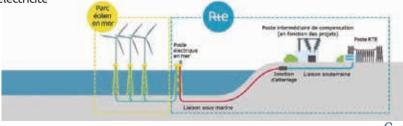
Financement Développeur Co-développeur Turbine **Fondations** participatif BW ideal Vestas. enerfip

Source: Vestas *Liste non exhaustive

53

RTE se positionne pour adapter son réseau aux enjeux de l'éolien en mer

En France, depuis fin 2017, un nouveau cadre législatif et réglementaire a été défini dans l'objectif d'accélérer le développement des projets éoliens en mer et de réduire les coûts associés. Il est inspiré du modèle appliqué en mer du Nord.


Le corpus juridique évolue pour intégrer de nouvelles mesures d'anticipation, de simplification et de **limitation des risques** des projets dans l'intérêt de la collectivité, parmi lesquelles :

- Le raccordement financé par RTE et refacturé à l'ensemble des consommateurs
- Une indemnisation des retards du raccordement et des avaries en exploitation
- Un permis enveloppe pour gagner en flexibilité

• Une planification spatiale maritime prenant en compte les capacités d'accueil à date du réseau de transport d'électricité

RTE se positionne au service d'un développement ambitieux des énergies marines renouvelables via :

- Une planification de long terme partagée avec les pouvoirs publics et les territoires pour anticiper et optimiser le dimensionnement du réseau, permettant :
 - La mutualisation du réseau public de transport en mer (« hub , de raccordement) pour baisser les coûts et les impacts
 - La standardisation de certaines infrastructures pour faire des économies d'échelles
- Le développement innovant de plateformes multiusages au service des territoires et des parties prenantes
- La réduction des impacts socio-économiques et environnementaux des ouvrages

55

Les premiers projets d'éolien flottant voient le jour

En France, la mer Méditerranée et la façade maritime bretonne bénéficient d'un gisement conséquent pour l'installation de parcs éoliens flottants en raison des régimes en vent très favorables et réguliers et de la bathymétrie (fonds océaniques plongeant très rapidement au-delà de 60m de profondeur).

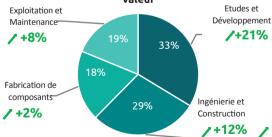
L'enieu principal pour l'éolien flottant est de converger son coût vers celui de l'éolien en mer posé, d'où la nécessité de développer plusieurs projets pour industrialiser la filière et gagner en compétitivité.

Des projets similaires se développent partout en Europe, preuve de l'importance de la filière éolienne flottante.

Proiet Caractéristiques Partenaires industriels Provence Grand SIEMENS Gamesa 3 éoliennes - 24 MW Large Groix-Belle Ile 3 éoliennes - 28.5 MW DITEGOCGN WINGS ONAVAL VESTAS. **Eolmed** 3 éoliennes - 30 MW VPSta5 Foliennes flottantes du 3 éoliennes - 30 MW aolfe du Lion **■**FIFFAGE Vestas. (EFGL)

«80% de la ressource éolienne européenne se trouve dans les zones à plus de 60m de profondeur. Wind Europe

Source : Observatoire des énergies de la mer 2021


22 600

emplois à fin

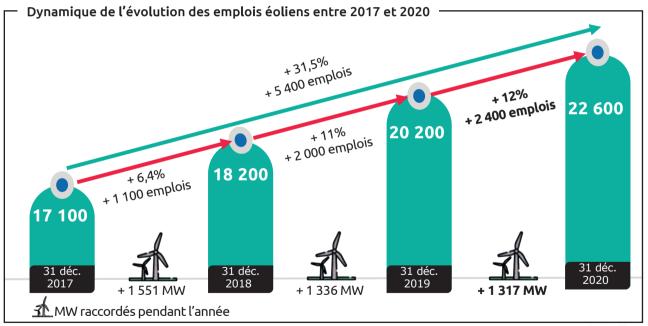
Augmentation de 12 % des emplois éoliens en 2020

+24% d'emplois éoliens dans la Région Pays de la Loire

Répartition et évolution des ETP sur la chaîne de valeur


En 2020, les emplois de la filière ont continué de croître à un rythme important puisque le taux de croissance atteint les 12%, avec un total de 22600 emplois directs et indirects en France au 31 décembre 2020.

Si la pandémie n'a pas atteint la dynamique globale, elle a malgré tout pesé sur les autorisations **délivrées** pour la construction des parcs et a mécaniquement freiné la croissance dans les activités liées à l'exploitation et la maintenance et surtout à celles liées à la fabrication de composants. Pour cette dernière catégorie, c'est l'offshore qui permet de maintenir la croissance.


Comme en 2019, c'est l'éolien en mer qui booste la croissance des emplois de la filière française. Le démarrage de la construction des parcs de Saint Nazaire, de Fécamp et de Saint-Brieuc explique largement cette tendance. Avec plus de 20% des emplois recensés, l'éolien en mer représente environ 5200 emplois en La croissance devrait se poursuivre avec la création d'emplois offshore en Normandie (pôles industriels du Havre et de Cherbourg).

La croissance de l'emploi éolien en France en 2020

Le nombre d'emplois éoliens continue à augmenter pour la 7^{ème} année consécutive

Source : Etude FEE 2021 et traitement des données Capgemini Invent

Capgemini invent

% par rapport au total

Détails par maillon de la chaîne de valeur

Une activité répartie sur 4 segments

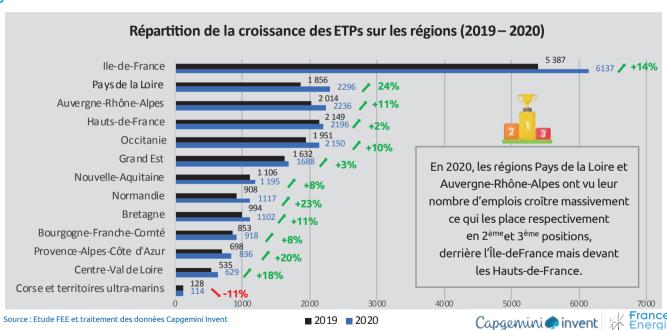
Les acteurs éoliens implantés en France couvrent l'ensemble des segments de la chaîne de valeur, sur lesquels les emplois

éoliens sont répartis :

			des emplois en 2020
Hamacontain and protection of the control of the co	Etudes et Développement	Ex. : bureaux d'études, mesures de vent, mesures géotechniques, expertises techniques, bureaux de contrôle, développeurs, financeurs	33%
	Ingénierie et Construction	Ex.: assemblage, logistique, génie civil, génie électrique parc et réseau, montage, raccordement réseau	29%
5	Exploitation et Maintenance	Ex.: assemblage, logistique, génie civil, génie électrique parc et réseau, montage, raccordement réseau	19%
		Ex. : pièces de fonderie, pièces mécaniques, pales,	
D.	Fabrication de composants	nacelles, mâts, brides et couronnes d'orientation, freins, équipements électriques pour éoliennes et réseau électrique	18%

Une dynamique très forte sur le maillon « Etudes et développement » qui traduit l'engagement de la filière pour concrétiser les objectifs de la PPE.

Le maillon « Études et développement » connait la croissance la plus forte avec 37% en 2 ans.


61

A l'inverse, le maillon « fabrication de composants » connaît une hausse très faible en 2020 (+2%). Cette tendance s'explique principalement par le retard pris sur les procédures d'autorisation des parcs. Cela induit un report des commandes auprès des fournisseurs. L'offshore permet néanmoins au maillon de rester en croissance.

62

Des entreprises de la filière en fort développement en Pays de la Loire et Normandie connaissent une croissance très forte, particulièrement grâce à l'offshore

La répartition des emplois éoliens par région

La filière éolienne crée des bassins d'emplois partout en France et au plus près des territoires Localisation des bassins d'emplois éoliens en France

Le Bassin parisien (Île-de-France ainsi qu'une partie de la région Centre-Val de Loire) regroupant traditionnellement une part importante des sièaes sociaux d'entreprises

Le Grand Ouest (Bretagne, Pays de la Loire, Normandie et une partie de la région Nouvelle-Aquitaine). importante aire d'implantation de l'éolien dont la facade maritime va bénéficier de la croissance de l'éolien en mer

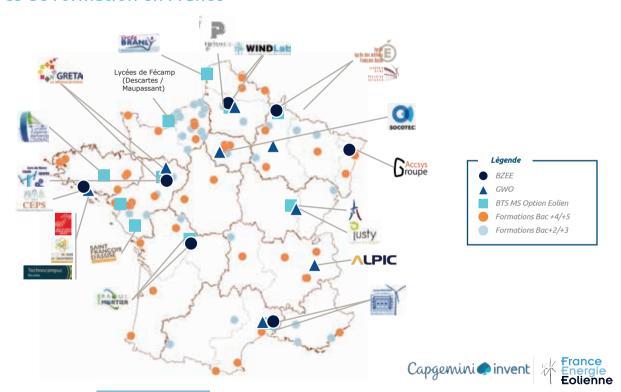
> 250 emplois éoliens 150 à 250 emplois éoliens 50 à 150 emplois éoliens 20 à 50 emplois éoliens 10 à 20 emplois éoliens < 10 emplois éoliens

Source : Etude FEE et traitement des données Capgemini Invent

Les régions Grand Est et Hauts-deFrance, territoires où la filière éolienne connaît un très fort développement des parcs éoliens, contribuant au dynamisme économique local,

Les régions Auvergne-Rhône Alpes et Bourgogne-Franche-Comté. régions industrielles anciennes diversifiant leurs activités et spécialisées dans la fabrication de composants pour l'activité éolienne

La Méditerranée (Régions Sud-Provence-Alpes-Côte d'Azur et Occitanie), berceau de l'industrie éolienne et de plusieurs de ses acteurs historiques.


Capgemini invent

64

Les formations de l'éolien

Les centres de formation en France

Des formations englobant tous les aspects métier du secteur éolien

Partenariats industriels

Des industriels et des bureaux d'études sont aujourd'hui impliqués dans le processus de formation et mettent en place des partenariats clés avec les lycées, les universités et les centres de formation. Ces industriels participent au financement de la formation et offrent des opportunités de stage. débouchant souvent sur un CDL

Formations axées éolien

Les formations certifiantes internationales (BZEE et GWO) sont fortement valorisées par les entreprises de développement et d'exploitation de parcs éoliens. Ces formations peuvent être notamment suivies après le bac en Licence professionnelle. BTS ou DUT, mais également dans le cadre de la formation continue.

Formations pour chaque niveau

Les formations propres à l'éolien sont présentes à tous les niveaux, du bac professionnel à l'école d'ingénieurs. Elles confirment le besoin de ressources expertes et formées en conséquence pour développer la filière.

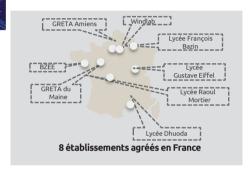
Réparties sur le territoire

Ces formations sont d'abord parrainées par les régions développant une production éolienne. Les centres de formation sont donc principalement localisés près des parcs de production.

Du CAP jusqu'à la licence professionnelle : des formations spécialisées

Au-delà de bac + 4, des formations de l'enseignement supérieur qui étoffent leurs modules métiers

Zoom sur deux exemples de mastères spécialisés en Energies Renouvelables sur le territoire français



Deux formations internationales certifiantes présentes en France

BZEE - Certificat « Technicien de maintenance des systèmes éoliens »

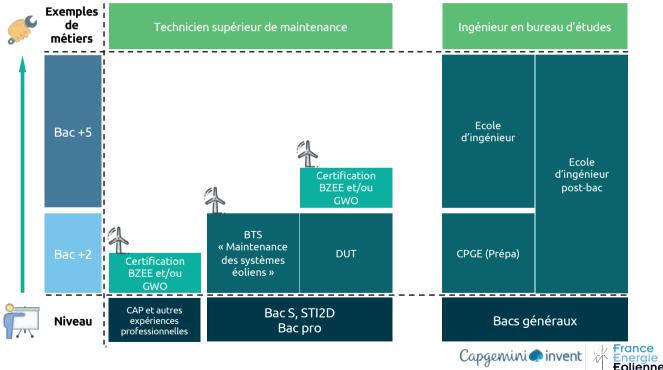
- Formations complémentaires en techniques de maintenance des éoliennes et des mesures de sécurité
- En formation continue ou en apprentissage de durée entre 6 à 9 mois
- 4 de ces centres de formation proposent également des modules du GWO
- Plus de 320 élèves formés et certifiés BZEE en 2016 en France. obtenant le certificat de technicien de maintenance des systèmes éo liens ou bien le certificat BZEE d'aptitude au travail en hauteur

Modules clés: opération offshore, technologie éolienne, mécanique et électronique de la turbine, gestion des opérations...

Certificat« Basic Safety Training »

- Formation focalisée sur la sécurité
- 5 modules à valider (sur 7 jours)
- Globalement aujourd'hui 25 000 personnes en Europe sont certifiées pour 3 à 5 modules du GWO
- Depuisdécembre 2015 le certificat BZEEintègre desmodules du GWO. notamment sur la sécurité des interventions de maintenance.

Modules clés: premiers secours, manutention manuelle, sensibilisation aux incendies, travail en hauteur, survie en mer



68

Exemples de parcours de formations

Les emplois de la filière permettent

69

Zoom sur les lycées Bazin (Charleville Mézières) & Dhuoda (Nîmes)

- Formations BTS et certification BZEE + GWO
- · Chaque année le lycée accueille 16 étudiants pour le FCIL et 12 étudiants pour le BTS
- Réalisation de partenariats forts avec de grands acteurs de l'éolien
 - o Signature d'un partenariat avec **EDF Energie Renouvelables** dans le cadre de la construction d'un parc de 61 éoliennes dans les Ardennes
- Depuis la création de la formation en 2007 entre 500 et 600 étudiants ont été diplômés

3 mois après l'obtention de leur diplôme 90% des diplômés accèdent à l'emploi

- Formations BTS et certification BZEF + GWO
- Chaque année le lycée accueille 90 étudiants pour le BTS et entre 200 et 300 étudiants pour ľIUT
- Le lycée envisage la mise en place de formations spécifiques à l'offshore, notamment pour former les étudiants au travail en mer et aux risques associés
- Bientôt la possibilité de suivre la formation en alternance grâce au titre RNCP

Zoom sur le campus Vestas

Le campus Vestas ouvrira ses portes en 2021 afin de former ses étudiants au métier de technicien de maintenance dans l'éolien. L'intérêt spécifique de cette formation en alternance est qu'elle s'adresse particulièrement à des jeunes sortis du système scolaire ou souhaitant intégrer un parcours court ou à des personnes en reconversion.

Pré-requis

- Formation : Bac Technique (maintenance, mécanique automobile, électrotechnique...) ou CAP/BEP avec quelques années d'expérience professionnelle
- Permis B
- Notions d'anglais

Compétences développées

- Mécanique
- Flectricité
- Electrotechnique
- Hydraulique
- Anglais
- Sécurité au travail

Promotions

1^{ère} promotion: 9 étudiants Date: 20/09/2021 Puis deux promotions /an

Localisation

- · Formation théorique : Reims (51)
- Formation pratique: sur les différents parcs éoliens de Troyes (10), Langres (52), Reims (51), Nancy (54) ou Saint Quentin (02) – au choix

Contrat de professionnalisation

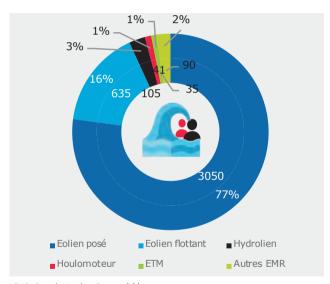
71

Contrat de professionnalisation intérimaire de 12 mois. avec à l'issue, possibilité d'un CDI Vestas si année validée

Capgemini nivent

Zoom sur : le centre de formation ENERCON au Meux (Oise)

Le Training Center du Meux dans l'Oise (60), mis en place par ENERCON, est ouvert depuis septembre 2017.


Cet espace d'environ 1400 m2 dédié aux techniciens de maintenance, peut accueillir 600 personnes par an. Celles-ci sont ainsi formées principalement sur les habilitations électriques et mécaniques.

En effet, les 7 formateurs de la structure assurent la montée en compétences des collaborateurs d'ENERCON et le respect de la règlementation liée au secteur de l'éolien. La majorité des formations portent en ce sens, sur les thématiques sécurité, électricité et mécanique.

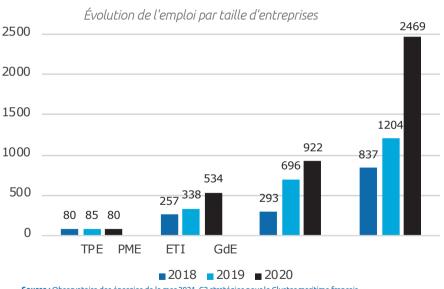
Cette ouverture de centre de formation pour la filière éolienne en France, initiées par ENERCON, s'inscrit dans la dynamique annoncée dans le cadre du Plan d'Investissement dans les compétences (2018-2022) avec le lancement de 10 000 formations aux métiers verts.

Les emplois de l'éolien en mer et leur place dans les EMR*

Fin 2020, le nombre d'ETP pour l'éolien en mer représentait 93% de l'ensemble des ETP sur les EMR, soit 3 685 ETP sur 3921 (dont 77% pour l'éolien posé et 16% pour l'éolien flottant, soit 3 050 ETP pour l'éolien posé et 600 ETP pour l'éolien flottant).

Ces ETP sont en nette augmentation par rapport aux chiffres de fin 2019, avec un gain de 1 400 ETP pour l'éolien posé et 227 ETP pour l'éolien flottant.

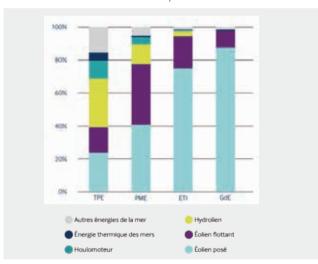
L'éolien posé et flottant étant les technologies les plus matures et compétitives de la filière avec des projets à des stades avancés, celles-ci représentent logiquement la quasitotalité des ETP et du chiffre d'affaires. Le chiffre d'affaires concernant l'éolien flottant a connu une augmentation de 20 % sur l'année écoulée grâce aux projets pilotes français.



^{*} EMR: Energies Marines Renouvelables

Focus sur l'observatoire des énergies de la mer

La filière éolienne en mer concerne l'ensemble des entreprises françaises, de la très grande entreprise à la start-up



Les emplois se consolident autour des PME et des grandes entreprises

Répartition des ETP sur l'éolien en mer par taille d'entreprise

Répartition des ETP par technologie et par taille d'entreprise

Plus de 90% des embauches réalisées en 2020 par les grandes entreprises (GdE) et les ETI concernent l'éolien en mer – dont les trois-quarts sont pour l'éolien posé. Cet engouement des grandes entreprises démontre la maturité de la filière éolienne en mer et la confiance des entreprises sur la croissance du marché.

A l'inverse, les très petites entreprises (TPE) sont peu présentes dans l'éolien posé, notamment du fait de l'importance des capitaux requis pour rentrer dans l'industrie. Les TPE sont davantage orientées vers les filières émergentes telles que l'hvdrolien et le houlomoteur, dans lesquelles de nombreuses innovations sont le fait de startups.

Enfin, les PME sont fortement présentes sur l'éolien flottant, signe des progrès faits par la technologie.

76

Répartition des ETP sur les énergies de la mer en France

De manière globale, les ETP sont en hausse dans toutes les régions, et en particulier dans les Pays de la Loire. La région enregistre la plus forte hausse avec près de 507 ETP (45%) en plus. La Normandie enregistre une hausse similaire et devient ainsi la deuxième région française pour l'emploi dans les FMR.

La Bretagne et l'Île-de-France connaissent également des hausses importantes.

Ces augmentations sont notamment dues à l'essor de l'éolien posé : avec les débuts des chantiers du parc d'éolien en mer de Saint-Nazaire et de Saint-Brieuc mais aussi par exemple les usines de pales de Cherbourg et de nacelles de Montoir-de-Bretagne.

Le rapport complet de l'Observatoire des énergies de la mer est consultable sur www.merenergies.fr

L'animation de la filière

La filière est animée par des acteurs diversifiés, qualifiés en trois grands types

Sept pôles de compétitivité actifs dans l'éolien en France, que l'on retrouve aussi près des zones de développement de l'éolien en mer: Bretagne-Atlantique et Méditerranée.

- PÔLE MER Bretagne Atlantique
- Technopole Brest-Iroise
- FMC2
- DFRBI
- PÔLE MER Méditerranée
- Capenergies
- Tenerrdis

Les clusters

Regroupement d'acteurs publics et privés permettant les transferts de connaissance entre tous ces acteurs. Huit clusters actifs dans le domaine de l'éolien ont été recensés en France:

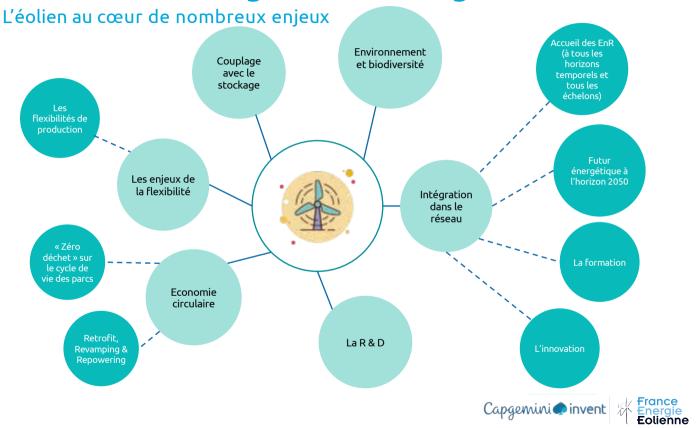
- Cluster Maritime Français
- MEDEE
- Ouest Normandie Energies Marines
- France Energies Marines
- Neopolia
- Technocampus Ocean. West Atlantic Marine Energy Center
- Cluster Eolien Aquitain
- CFMATFR

Autres acteurs

fédérations Syndicats et professionnelles aui. à l'instar France Energie Eolienne. regroupent des professionnels de l'industrie éolienne :

- FNTP.
- FNTR.
- UFL.
- Cluster Maritime Français. Gimélec.
- EVOLEN.
- SFR...

Capgemini on invent



Introduction aux grands challenges

La filière éolienne prête à bâtir un Wind Deal

Face aux défis tant écologiques, sociaux qu'économiques que comporte l'avenir, l'énergie éolienne est une solution incontournable pour la France et l'Europe

Au-delà des mesures d'urgence qui ont été prises pour faire face à la crise du Covid-19, il est fondamental que la filière fasse partie du plan de relance économique durable envisagé par le Gouvernement, en proposant un « Wind Deal », dans la perspective plus large d'un « Green Deal ¸ français et européen.

MESURES PROPOSÉES PAR LA FEE

Pour la filière

- Mise en œuvre du Schéma Décennal de Raccordement du Réseau (SDDR) 2019
- Nomination d'un **coordinateur national du développement éolien**
- Mise en place d'une taxe carbone avec prix plancher
- Accompagnement des expertises et compétences françaises dans leurs point forts comme la French Tech
- Cessation de l'ajout de contraintes pesant sur le développement éolien

Pour l'éolien terrestre

- Optimisation des **contraintes spatiales** pour libérer les espaces
- Facilitation du renouvellement des parcs existants
- Stabilité et prévisibilité des mécanismes tarifaires et d'attribution
- Amélioration de l'efficacité et du respect des délais des procédures d'instruction

- Définition de normes et standards européens pour accroître l'efficience du secteur
- Fixation et déclinaison d'objectifs régionaux déclinant la PPE
- Soutien à l'intégration de l'éolien au réseau et au marché européen grâce à l'innovation (digitalisation, automatisation)

Pour l'éolien en mer

- Recrutements RH massifs et renforcement de l'expertise « éolien en mer » de la DGEC du Ministère de la Transition écologique
- Planification moyen-long terme du déploiement de l'éolien en mer sur l'ensemble des façades mari times, en lien avec l'adoption d'un objectif de long terme (2050), tel que prévu par le CiMER de janvier 2021.

Intégration dans le réseau - À tous les échelons

Enedis et RTE préparent les réseaux du futur, capables d'accueillir d'ici 2035 cinq fois plus de renouvelables qu'aujourd'hui

Lespages suivantes ont été élaborées en collaboration avec Enedis. gestionnaire français de réseaux publics de distribution d'électricité sur 95 % du territoire français continental et RTE, gestionnaire du réseau public de transport d'électricité.

Enedis et RTE sont engagés depuis plusieurs années dans une démarche d'adaptation profonde de leurs réseaux afin d'accueillir les nouvelles installations de production d'électricité dont l'éolien tout en garantissant la sécurité et la sûreté du système électrique.

Les opérateurs se mobilisent pour accueillir les énergies renouvelables dans le réseau actuel et investissent à long terme pour développer un réseau capable d'intégrer des quantités croissantes d'électricité renouvelable. D'ici à 2035, les réseaux électriques devront être capables d'accueillir 5 fois plus d'éolien et de solaire qu'aujourd'hui. Pour faire face à cechallenge, Enedis et RTE se mobilisent notamment autour de trois axes :

- Des expérimentations de terrain permettant de tester des solutions innovantes et flexibles nécessaires à l'accueil des EnR :
- La planification pour anticiper l'accueil des EnR par les réseaux
- · L'évolution du cadre réglementaire

Intégration dans le réseau | Focus RTE/AIE | Focus innovation | Focus formation | La flexibilité | La R&D | Couplage avec le stockage | Respect de la biodiversité | L'économie circulaire

Intégration dans le réseau - À tous les échelons

L'accueil des EnR se prépare à tous les échelons des territoires...

Une présence au niveau local afin de réaliser les travaux de raccordement, de favoriser le dialogue avec les collectivités et contribuer aux phases de concertation sur les projets ancrés localement.

Une présence au niveau régional notamment dans l'élaboration des Schémas Régionaux de Raccordement au Réseau des Énergies Renouvelables (S3REnR) et leur mise en œuvre.

Une présence au niveau national dans les réflexions menées par l'Etat et la Commission de Régulation de l'Energie (CRE) sur l'accueil des EnR : au travers notamment de la concertation pour l'implémentation à l'échelle de la France des codes de réseaux européens et des groupes de travail autour de la Transition Energétique.

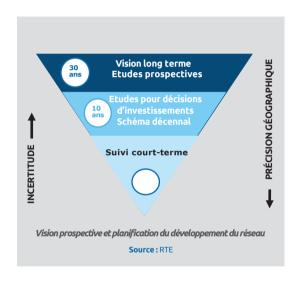
Une présence au niveau européen (interconnexions, codes réseaux, etc.) grâce à des contributions dans l'élaboration des directives européennes qui structurent l'arrivée des EnR dans les réseaux, et grâce à leur mise en œuvre au quotidien.

Intégration dans le réseau - À tous les échelons

Intégration dans le réseau Focus RTE/AIE Focus innovation Focus formation I La flexibilité I La R&D I Couplage avec le stockage I Respect de la biodiversité I L'économie circulaire

... ainsi que pour différents horizons temporels

Le développement du réseau de transport se fait sur la base d'études technico-économiques, à différents horizons de temps. Pour réaliser ces études, il est nécessaire d'avoir une vision prospective de l'évolution des grands déterminants pour le réseau : la consommation d'électricité, le mix énergétique français, avec en particulier le développement de la production d'énergies renouvelables et les échanges internationaux.


La vision prospective est ensuite affinée au fur et à mesure des études plus approfondies menées sur les projets, en prenant en compte des hypothèses de plus en plus précises sur l'évolution des déterminants.

L'ensemble de ces études s'appuie sur les exercices de la Programmation pluriannuelle de l'énergie, le Bilan prévisionnel, les Schémas régionaux de raccordement au réseau des énergies renouvelables (S3REnR) le Schéma décennal de développement du réseau (SDDR) et le plan décennal de développement du réseau européen (TYNDP).

Le Bilan prévisionnel de RTE est une étude approfondie de l'évolution de l'équilibre entre la production et la consommation d'électricité. Sa prochaine édition long-terme ira jusqu'en 2050 et étudiera des scénarios contrastés notamment un scénario avec un mix 100% EnR. L'élaboration de ces scénarios est largement concertée. RTE a également publié en janvier 2021 une étude conjointe avec l'AIE sur les conditions d'un système électrique à forte part d'ENR en France à l'horizon 2050.

Le **Schéma décennal de développement du réseau (SDDR)** établi par RTE est un document qui englobe et synthétise les visions court-terme, moyen-terme et long-terme de l'évolution du réseau de transport français (voir pages suivantes).

Enfin, les **S3RENR** permettent d'identifier et d'anticiper les besoins sur le réseau pour accueillir les ambitions de développement EnR régionales fixées par le préfet de région, à un horizon de 10 ans (voir pages suivantes).

85

Intégration dans le réseau | Focus RTE/AIE | Focus innovation | Focus formation | La flexibilité | La R&D | Couplage avec le stockage | Respect de la biodiversité | L'économie circulaire

Intégration dans le réseau - À tous les échelons

Le schéma décennal de développement du réseau (SDDR) permet l'anticipation des besoins du système électrique de demain

Le SDDR est une mission confiée à RTE par la loi depuis 2011. Il éclaire les diverses parties prenantes sur les conséauences techniques, économiques et environnementales de l'évolution du réseau électrique, selon différents scénarios de politiques énergétiques à différents horizons :

- à 3 ans : il répertorie les investissements déià décidés ainsi que les nouveaux investissements qui doivent être réalisés dans les trois ans
- à 10 ans : il mentionne les principales infrastructures de transport qui doivent être construites ou modifiées, en fournissant un calendrier de tous les projets d'investissements
- à plus long terme : la dernière édition publiée fin 2019 fournit une vision stratégique et prospective de l'évolution globale du réseau jusqu'à 2035, en évaluant les impacts économiques et environnementaux des différents scénarios du Bilan Prévisionnel et de la PPE. Ces travaux mettent notamment en lumière le fait que les besoins d'adaptations du réseau de transport seront largement déterminés par le rythme effectif de développement des énergies renouvelables, et restent du second ordre par rapport au coût global de la transition énergétique. Pour la réalisation de ce dernier volet, RTE a associé de manière élargie les parties prenantes à l'élaboration du schéma 2019, via une consultation formelle qui a eu lieu au mois de mai 2018.

Le SDDR est soumis à l'approbation de la CRE. La consultation publique de la CRE sur le SDDR s'est terminée le 8 juin, celleci en a délibéré à l'été 2020 : la CRE se déclare favorable aux grands principes du SDDR, qui visent à optimiser les coûts de l'adaptation du réseau à la transition énergétique. Dans son analyse, elle encourage notamment le recours aux flexibilités, présenté dans le document.

France Energie Eolienne souligne que le SDDR doit permettre d'accompagner les acteurs de la transition énergétique en donnant une feuille de route claire de la restructuration du réseau électrique sur le long terme.

86

Ene

Les S3REnR permettent de mieux raccorder les énergies renouvelables

Les S3RENR, institués par la loi « Grenelle II », sont des outils de planification des réseaux élaborés par RTE, avec l'appui des gestionnaires de réseaux de distribution, dont Enedis. Ils permettent d'anticiper les besoins en capacités d'accueil sur le réseau réservées aux énergies renouvelables et optimisent les évolutions des réseaux électriques en conséquence. Les S3RENR ont un triple enjeu: offrir une visibilité à moyen terme sur les capacités d'accueil des réseaux (d'ici 2030 en principe pour les prochains schémas); optimiser et anticiper les développements nécessaires pour atteindre ces objectifs et mutualiser les coûts entre producteurs pour ne pas faire porter l'ensemble des coûts d'infrastructures aux premiers projets EnR.

Les S3RENR sont entrés dans une nouvelle phase d'élaboration. En effet, conformément à l'ordonnance n°2019-501, les préfets de chaque région fixeront les capacités d'accueil des nouveaux schémas en tenant compte des objectifs nationaux de développement EnR définis par la PPE, des ambitions régionales définies dans les SRADDET ainsi que de la dynamique de développement des EnR dans la région, et ce, dans les conditions fixées par le décret n°2020-382 du 31 mars 2020 et reprises dans le code de l'énergie.

RTE collabore d'ores et déjà avec les territoires pour l'élaboration de ces nouveaux schémas. Le schéma révisé de la région Nouvelle Aquitaine est entré en vigueur le 10 février 2021 suite à l'approbation de la quote-part par la Préfète. Les travaux de révision se poursuivent sur de nombreuses régions, en particulier sur Grand Est, AURA, Provence-Alpes-Côte d'Azur et Bourgogne Franche-Comté pour lesquelles les phases de consultation publique ont eu lieu fin 2020/début 2021 avec une approbation de quote-part prévue au 1er trimestre 2022. Toutes les régions engagées dans le processus de révision disposent désormais d'objectifs fixés par le préfet à l'exception de Pays de la Loire.

En attendant l'approbation des schémas révisés, les gestionnaires de réseau mettent en œuvre les adaptations de schéma permettant de résorber les saturations locales identifiées sur les réseaux.

Les S3REnR ne sont pas suffisants pour couvrir la totalité des besoins du réseau pour accueillir les EnR, les ouvrages grands transports et inter-régionaux n'y étant pas inclus. D'où la nécessité de mettre en œuvre le SDDR, qui, lui, couvre l'ensemble des besoins pour obtenir à l'horizon 2035 un réseau pensé pour un mix diversifié.

Intégration dans le réseau | Focus RTE/AIE | Focus innovation | Focus formation | La flexibilité | La R&D | Couplage avec le stockage | Respect de la biodiversité | L'économie circulaire

Intégration dans le réseau - À tous les échelons

A ce jour, les 20 « S3REnR » cumulent 30,4 GW de capacités d'accueil d'EnR sur le territoire

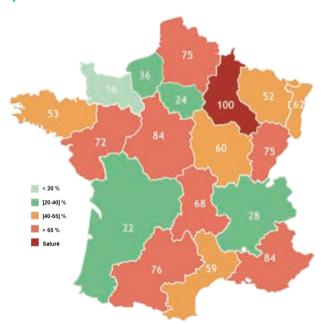
Chiffres clés 2020

- Cumul des capacités d'accueil réservées aux EnR: 30,4GW
- Le montant total des investissements pour l'accueil des EnR dans les S3R s'élèvent à 1157 M€ de créations et 308 M€ de renforcements

Montant total des investissements pour l'accueil des EnR dans les S3REnR à fin 2020

- Travaux sur le réseau d'Enedis : 267 M€ dépensés à fin 2020 en créations d'ouvrages et 50 M€ en renforcement
- Travaux sur le réseau de RTE : 188 M€ pour les créations d'ouvrages et 113 M€ en renforcement

Pour rappel, les ouvrages de création des S3REnR sont financés par les producteurs au travers du mécanisme de la quote-part : A fin 2020, les sommes dépensées par les gestionnaires de réseau pour la réalisation des ouvrages de création des S3REnR représentent en moyenne près du double des sommes perçues au titre des quotes-parts auprès des producteurs (483 M€ versus 276 M€).



Intégration dans le réseau - À tous les échelons

... Néanmoins, de fortes disparités subsistent dans l'utilisation des capacités d'affectation réservées à mi-année 2021

Croissance rapide des projets en service et en développement : + 48% en un an sur Alsace et + 25% sur Champagne-Ardenne et Languedoc-Roussillon

Adaptations en cours sur 7 régions : PACA, Midi Pyrénées, Rhône Alpes, Languedoc-Roussillon, Bretagne, Centre Val de Loire et Hauts de France

Intégration dans le réseau | Focus RTE/AIE | Focus innovation | Focus formation | La flexibilité | La R&D | Couplage avec le stockage | Respect de la biodiversité | L'économie circulaire

Intégration dans le réseau - À tous les échelons

L'INSAS vise à accélérer le raccordement

Un Groupe de Travail lancé en 2018 au sein du Comité des utilisateurs du réseau de transport d'électricité (CURTE) sur l'accélération et l'anticipation des adaptations du réseau nécessaires au développement des énergies renouvelables a conduit à la mise en place de l'Instance Nationale de Suivi et d'Amélioration des S3REnR (INSAS) regroupant les fédérations de producteurs, les gestionnaires de réseaux, les services de la CRE et de la DGEC. L'INSAS vise à partager les visions régionales et nationales des S3REnR en vigueur, l'évolution des perspectives de gisements des énergies renouvelables, l'avancement des études et des procédures anticipées, et de préparer des propositions communes pour améliorer la mise en œuvre des schémas.

Plusieurs réalisations concrètes issues de ce GT et placées sous la responsabilité de l'instance nationale :

· Lancement de la réalisation d'une plateforme de collecte des gisements de production EnR

Cet outil, en cours de définition par RTE en proche collaboration avec les GRD et les fédérations professionnelles, permettra de recueillir directement auprès des producteurs les informations relatives aux gisements de production EnR à intégrer lors de l'élaboration et de la vie des S3REnR, en respectant le niveau de confidentialité qu'ils auront défini eux-mêmes. Cet outil permettra ainsi d'améliorer la robustesse des gisements pris en compte et de ce fait, la pertinence des adaptations des réseaux publics nécessaires.

· Elaboration d'une note de synthèse des propositions pour accélérer et anticiper les adaptations du réseau

La principale proposition porte sur l'anticipation des études et des procédures administratives sur les ouvrages structurants (délai de réalisation supérieur à 4 ans). L'objectif est de réaliser un exercice prospectif tous les 5 ans au maximum permettant, sur la base de gisements localisés par les fédérations de producteurs, d'identifier et concerter avec les parties prenantes les ouvrages structurants qui seront nécessaires au-delà du S3REnR en vigueur, puis de lancer les études et procédures administratives de ces projets sans attendre la révision du schéma. Le décret de mars 2020 a d'ailleurs intégré les modalités de financement de ces études dans le cadré des S3REnR. Une procédure opérationnelle de mise en œuvre de l'anticipation des études et des procédures administratives est en cours de finalisation au sein de l'INSAS.

• Mise en place d'un Groupe de Travail sur l'opportunité de développer un nouveau palier technique sur les réseaux publics Fin 2019, ce groupe a débuté ses travaux d'analyses techniques et économiques globales de nouvelles structures de réseau, afin d'évaluer l'opportunité de développer un nouveau palier pour faciliter le raccordement des EnR.

Conditions techniques pour un système électrique à forte part d'énergies renouvelables

Rapport RTE-AIE : livrable intermédiaire sur la faisabilité technique, qui prépare l'étude prospective de RTE « Futurs énergétiques 2050 »

Commandée en 2019 par le ministère de la Transition Ecologique, cette étude réalisée conjointement avec l'AIE vise à étudier la **faisabilité technique de scénarios de mix énergétiques à hautes et très hautes part d'EnR variables**. Le rapport décrit quatre conditions strictes et cumulatives que les politiques publiques doivent prendre en compte si elles décident de s'orienter vers un mix électrique à forte proportion d'énergies renouvelables à l'horizon 2050:

- La compensation de la variabilité des ENR qui nécessitera des volumes importants de moyens pilotables décarbonés tels que le stockage, les moyens de pointe, les flexibilités de consommation etc.
- Le maintien de la fréquence qui impliquera le développement de nouvelles solutions techniques à intégrer dès la fabrication des infrastructures de production d'énergies renouvelables, dès lors que de très hautes parts de production instantanées seront atteintes.
- La capacité à prévoir les réserves et les marges pour piloter le réseau en temps réel.
- La reconfiguration du réseau de transport qui devra s'adapter à l'évolution des flux d'énergie et à la nouvelle localisation des unités de production.

 ${\it Rapport\,RTE-AIE\, disponible\, sur\, rte-France.com}$

Cette étude met en évidence un besoin de tests et de déploiement à grande échelle de solutions technologiques. Les défis industriels associés seront proportionnés à la part d'énergie renouvelable considérée à cet horizon mais supposeront dans tous les scénarios une feuille de route volontariste engageant les pouvoirs publics et les acteurs industriels.

Cette publication marque une étape importante qui s'insère dans un programme de travail plus vaste visant à élaborer et à comparer des scénarios de transformation à long terme du système électrique pour atteindre la neutralité carbone en 2050.

Capgemini invent France Energie Eolienn

Principales conclusions de l'étude RTE-AIE

Un système reposant largement sur les EnR est techniquement envisageable, sous un ensemble de conditions cumulatives et strictes

Problématiques techniques de premier ordre

Compenser la variabilité des EnR

1

2

Enjeux : technique (passage à l'échelle), économique (intégration du coûts des flexibilités au coût complet des EnR pour une comparaison équivalente du service rendu)

Problématiques techniques <u>de second ordre</u>

Assurer la stabilité du système

Un système reposant exclusivement sur l'éolien et le PV est possible : des solutions existent pour maintenir la fréquence mais certaines sont encore à l'état de R&D

Enjeu: technique (R&D, passage à l'échelle)

Reconfigurer largement le <u>réseau de transport</u>

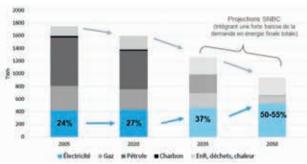
Les grands axes du réseau français (nord-sud et est-ouest) devraient être redimensionnés à partir de 2030, avec probablement des ouvrages en site vierge

Enjeux : environnemental et sociétal (emprise
 « production + réseau + stockage » d'énergie)

Faire évoluer les réserves de fonctionnement du système

Améliorer la qualité de prévision de la production EnR et développer de nouvelles solutions pour pallier l'incertitude (ex : batteries des véhicules électriques)

Enjeu: technique (R&D, passage à l'échelle)


Capgemini invent

« Futurs énergétiques 2050 »

RTE élabore les scénarios 2050 du bilan prévisionnel, dans le cadre d'un dispositif d'étude et de concertation d'une ampleur inédite

x% part de l'électricité dans la consommation finale énergétique totale

Cette étude a pour but de décrire les caractéristiques, les enjeux ainsi que les jalons clés des systèmes électriques compatibles avec l'atteinte de la neutralité carbone en 2050. Celle-ci impliquera la bascule systématique des énergies fossiles vers les énergies décarbonées notamment dans le secteur des transports, du bâtiment et de l'industrie.

En cohérence avec les scénarios européens et mondiaux, la part de l'électricité dans le mix énergétique est appelée à augmenter de manière substantielle. Pour la France, les principaux défis vont consister à accroitre la production d'électricité décarbonée tout en remplaçant progressivement un parc de production qui arrivera en fin de vie au cours des 30 prochaines années.

L'étude compare **deux grandes familles de scénarios**: avec ou sans nouveau nucléaire, pouvant conduire à des scénarios 100% EnR à l'horizon 2050. Ils seront complétés par des variantes autour des hypothèses de réindustrialisation, de consommation ou encore du développement de l'hydrogène, ainsi que de nombreuses analyses de sensibilité.

Les éléments de cadrage sur lesquels portera l'analyse sont le fruit d'un dispositif de concertation inédit qui s'est terminé par une consultation publique au printemps 2021 et au cours de laquelle plus de 4000 contributions d'experts et de citoyens ont été reçues.

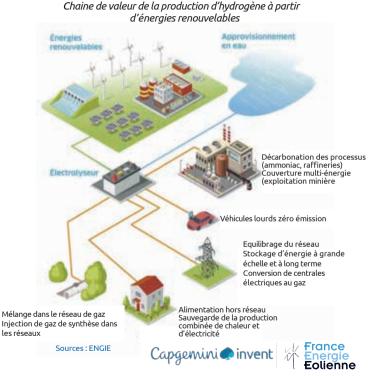
Les résultats, qui seront publiés à l'automne 2021, seront restitués selon quatre axes d'analyse : **technique**, **économique**, **environnemental et sociétal.**

Intégration dans le réseau [Focus RTE/AIE] Focus innovation [Focus formation] La flexibilité [La R&D] Couplage avec le stockage [Respect de la biodiversité] L'économie circulaire

Intégration des EnR - Focus Hydrogène

La filière éolienne sera l'un des piliers pour le succès de la mise en place

d'une filière hydrogène en France


A moyen et long terme, les parcs éoliens pourront permettre, grâce à leur production d'électricité, de produire de l'hydrogène vert. Cette production d'énergie décarbonée pourra permettre à terme de favoriser l'implantation de nouvelles usines dans les territoires.

Daniel David, Maire de Benet (Vendée)

L'énergie éolienne et photovoltaïque que nous produisons pourrait à terme nous permettre de favoriser la création d'une filière de production d'hydrogène. Et idéalement d'attirer de futures usines alimentées par de l'énergie propre sur notre territoire.

Intégration dans le réseau [Focus RTE/AlE [Focus innovation] La flexibilité [La R&D [Couplage avec le stockage [Respect de la biodiversité] L'économie circulaire

Intégration dans le réseau - L'innovation

Les gestionnaires de réseau innovent pour accélérer le raccordement des énergies renouvelables

Jusqu'à aujourd'hui construire un poste source prenait environ 2 ans (précédés d'une instruction administrative de 3 ans). Enedis s'est engagée dans une transformation du processus et des conditions industrielles de construction des Postes Sources avec le Poste Source Express : un nouveau standard industriel qui réduit de moitié la durée des travaux de construction d'un Poste Source.

Les 2 principes du Poste Source Express :

- Modularité: la nature modulaire du Poste-Source Express permet une pré-construction en usine d'éléments structurels, une mise en parallèle des processus, un assemblage accéléré et une grande souplesse.
- **Standardisation** : la rationalisation des processus et du contrôle qualité, ainsi que l'uniformisation des matériels.

Le Poste Source Express, un nouveau standard industriel

Le Poste-Source Express est une **solution adaptée au déploiement accéléré en milieu rural** et dont les performances dépendent également des conditions de raccordement au réseau de transport.

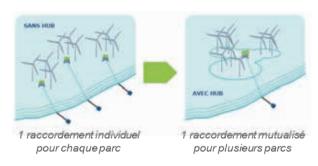
Déploiement

Après 9 mois de travaux, le 1er Poste Source Express a été mis en service en Juillet 2020 à **Montpinson** en Champagne-Ardennes

Suivi d'ici 2024:

15 postes sources Express Soit 1 poste source sur 4 Soit 1 poste source S3REnR sur 2

Pour atteindre un déploiement de 36 postes sources Express d'ici 2030


Intégration dans le réseau [Focus RTE/AlE [Focus innovation [La flexibilité [La R&D [Couplage avec le stockage [Respect de la biodiversité [L'économie circulaire

Intégration dans le réseau - L'innovation

Rite

Construire un nouveau réseau en mer, pour raccorder plus de 10 GW d'éolien en mer sur les 15 prochaines années

Les objectifs de la filière éolien en mer sont définis dans la **Programmation pluriannuelle de l'énergie (PPE).** Le décret fixant la PPE paru en avril 2020 fait suite à la **loi Energie-Climat** adoptée en novembre 2019. Le Gouvernement français affiche la volonté d'accélérer le déploiement de l'éolien en mer avec une ambition de lancement et d'attribution de futurs projets à hauteur d'1 GW par an. Les projets attribués à partir de 2024 porteront notamment sur des extensions des parcs éoliens en mer précédents, avec un raccordement mutualisé.

Levier d'optimisation pour le raccordement des parcs éoliens en mer

RTE se positionne au service d'un **développement ambitieux** des **énergies marines renouvelables.**

Trois leviers d'optimisation pour baisser les coûts et tenir les délais :

- le développement de **plateformes mutualisées** et modulaires («hubs ») et la diversification des usages de ces plateformes ;
- le dimensionnement adéquat de la puissance des parcs, envue d'éviter les effets de seuil;
- la standardisation de certaines infrastructures pour faire des économies d'échelles.

Ces leviers dépendent en partie de l'Etat et illustrent la **nécessité d'une planification à long terme** (économie de 15 % sur les coûts de raccordement pour les futurs appels d'offres).

Afin de contribuer aux réflexions collectives sur la planification spatiale maritime de long terme, RTE élabore des documents de perspectives de développement des réseaux en mer pour chaque façade maritime, en lien avec les débats publics. Un tel document a déjà été produit pour la façade normande en 2020.

Cappenini invent

Intégration dans le réseau | Focus RTE/AIE | Focus innovation | Focus formation | La flexibilité | La R&D | Couplage avec le stockage | Respect de la biodiversité | L'économie circulaire

Intégration dans le réseau - L'innovation

Un nouveau dispositif : les Offres de Raccordement Alternatives (ORA) avec limitation de la puissance injectée

Les Offres de Raccordement Alternatives à l'offre de référence sont un levier offert aux producteurs demandeurs du raccordement. En effet, l'arrêté du 12 juillet 2021 d'application de l'article D. 342-23 du Code de l'énergie rend possible la sollicitation d'une offre de raccordement alternative à l'offre de référence, qui vise à permettre des coûts moindre et/ou des délais raccourcis pour sa mise en œuvre en économisant des investissements sur le réseau en échange de modulations ponctuelles de la puissance injectée sur le réseau sans contrepartie financière.

Principes

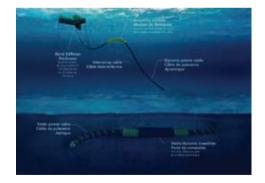
Un producteur fait **une demande de raccordement** sur le réseau le concernant (transport comme distribution) qui effectue une étude afin de déterminer **l'offre de raccordement** permettant de satisfaire la puissance de raccordement demandée. Cette offre peut, dans certains cas, nécessiter des investissements pour lever des contraintes réseau.

Sur demande du producteur, le gestionnaire de réseau peut proposer une Offre de Raccordement Alternative, consistant en un raccordement plus rapide et/ou plus économique en échange de limitations de la puissance injectée sur le réseau en cas de contrainte, c'est-à-dire lorsque la production dépasse la puissance pouvant être évacuée par le réseau, et ce sans contrepartie financière.

L'arrêté pris par la Ministre en charge de l'énergie encadre ces nouvelles Offres de Raccordement de manière à :

- permettre au gestionnaire de réseau de remettre ces offres sous deux conditions cumulatives :
- une puissance garantie en injection inférieure à la puissance de raccordement demandée ; cette différence ne pouvant pas dépasser 30% (ie P_{garantie} > 70% P_{raccordement}),
- l'énergie écrêtée ne dépasse pas 5% de la production annuelle de l'installation de production
- s'assurer que le total de la puissance contractuellement non garantie en injection est inférieure à 1 % de la capacité globale des ENR raccordées au réseau concerné et de limiter le volume d'énergie écrêtée annuellement à 0,1 % de la production de l'année précédente des ENR raccordées au réseau concerné.

Intégration dans le réseau | Focus RTE/AIE | Focus innovation | Focus formation | La flexibilité | La R&D | Couplage avec le stockage | Respect de la biodiversité | L'économie circulaire


Intégration dans le réseau - L'innovation

Rie

Accompagner le développement prometteur de l'éolien flottant

L'éolien flottant, en s'affranchissant de la contrainte bathymétrique et permettant l'installation des parcs de production en mer à des profondeurs comprises entre environ 30 et 300 mètres, s'inscrit comme une technologie complémentaire à l'éolien posé, jouissant d'un potentiel d'implantation considérable au niveau mondial. La France possède l'une des plus grandes façades maritimes en Europe, particulièrement bien ventée et propice à l'éolien flottant au large de ses côtes atlantique et méditerranéenne.

A cet égard, et afin d'accompagner la filière industrielle dans le développement de cette technologie d'avenir, **RTE est d'ores et déjà engagé dans des travaux de R&D pour lever les derniers verrous technologiques existants** et ainsi développer des solutions toujours plus optimales de raccordement.

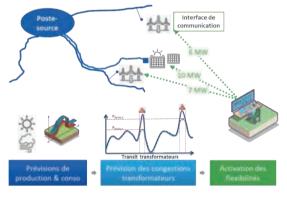
RTE mène dans cette optique 2 axes principaux de R&D:

- > Les postes en mer flottants :
 - Intérêt sur des zones de fonds marins profonds (> 50-60 m);
 - Une opportunité pour :
 - réduire l'impact environnemental du raccordement;
 - améliorer l'acceptabilité des autres usagers de la mer et des riverains.
 - Des défis à relever avant tout développement industriel : systèmes d'ancrage, équipements, câbles dynamiques;
- Les câbles dynamiques très haute tension (225 kV), en capacité d'accompagner les mouvements, latéraux et verticaux, de l'éolienne flottante.

Intégration dans le réseau [Focus RTE/AlE | Focus innovation | Focus formation | La flexibilité | La R&D | Couplage avec le stockage | Respect de la biodiversité | L'économie circulaire

Intégration dans le réseau - L'innovation

Accélérer la transition énergétique en s'appuyant sur des flexibilités locales et une optimisation du dimensionnement des réseaux


L'optimisation du dimensionnement des postes sources S3RENR correspond au plus grand gisement de valeur des flexibilités sur le réseau public de distribution pour la collectivité. C'est l'objet du projet ReFlex d'Enedis en association avec RTE.

De nouvelles hypothèses de dimensionnement des postes-sources

Lors de l'élaboration des S3REnR, les transformateurs des postes sources HTB/HTA sont aujourd'hui dimensionnés pour garantir l'évacuation de 100% de la puissance maximale injectable du gisement identifié de producteurs renouvelables. L'activation ponctuelle de flexibilités de production lors des périodes de contraintes de transit liées à l'injection au niveau d'un transformateur HTB/HTA représente un levier de flexibilité collectif pour augmenter la capacité d'accueil des postes-sources S3REnR.

Flexibilités: un appel au marché

Lorsque les besoins de flexibilités seront nécessaires, les activations feront l'objet de **compensation financière** de l'énergie écrêtée. L'**appel au marché** est la voie privilégiée, pour concurrencer l'écrêtement de production techniquement accessible, pilotable, à un **coût encadré et maitrisé**.

2021 – lancement de l'expérimentation sur deux zones : la Somme et les Landes

- Mise à disposition des capacités S3REnR supplémentaires sur les postes sources des deux zones d'expérimentation,
- Concertations poursuivies avec acteurs externes par thématique: Optimisation des investissements S3REnR, Market De sign, Règles d'interclassement des flexibilités ou encore Traitement post-activation des flexibilités,
- Préparation des appels aux marchés pour des besoins de flexibilités à partir de 2023;

Vers une ambition d'industrialisation à partir de 2024

Intégration dans le réseau - L'innovation

Les opérateurs investissent dans des projets R&D à long terme pour développer un réseau capable d'intégrer des quantités croissantes d'EnR

Enedis et RTE s'impliquent dans des projets ambitieux de recherche à long terme et nouent des liens étroits avec les parties prenantes des territoires et des partenaires variés (industriels, PME-PMI, start-up, universités et laboratoires) afin de collaborer à l'édification du réseau électrique du futur.

Budgets R&D en lien avec la transition énergétique :

RTE: 90 M€ sur les 160 M€ du Turpe 6 entre 2021 et 2024
 Enedis: 144 M€ sur 225M€ de budget R&D entre 2017
 et 2020

Partenariats – les nouveautés :

RTE:

- Adhésion à France Energies Marines et à l'initiative Bits&Watts de l'université de Stanford.
- Partenariat autour de la biodiversité avec le Museum d'Histoire Naturelle avec lequel RTE mène le projet SPECIES (Submarine Power Cables Interactions with Environment and associated surveys)

ENEDIS:

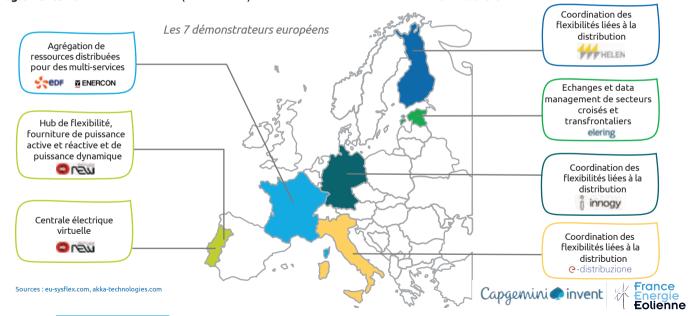
- Partenariat renforcé avec Grenoble INP sur l'intégration des EnR, le fonctionnement des réseaux et les formations aux métiers des SmartGrids.
- Nouveaux partenariats avec l'Institut Interdisciplinaire d'Intelligence Artificielle 3IA dont les travaux pourront s'articuler autour de l'intégration des EnR et la conduite des réseaux.

CAP R&D - feuille de route R&D de RTE

RTE a lancé en 2020, une démarche pour établir une feuille de route de R&D pour les dix prochaines années. En effet, les dix dernières années ont permis à RTE d'engager et de porter certaines réflexions notamment concernant l'intégration des énergies renouvelables au systèmes électriques. Certaines de ces réflexions arrivent à maturité ce qui poussent RTE à réactualiser les objectifs à traiter pour l'avenir. De plus, les enjeux à long-terme évoluent : à la performance technico-économique s'ajoutent la solidarité, le climat, la biodiversité, la sobriété et la résilience. Ainsi, RTE souhaite se doter d'une nouvelle feuille de route qui guidera ses axes de recherches et permettra de répondre aux enjeux long terme.

<u>Modalité</u>: les travaux sur la feuille de route R&D de RTE sont partagés et concertés dans le cadre de la CPSR

Echéance: été 2021

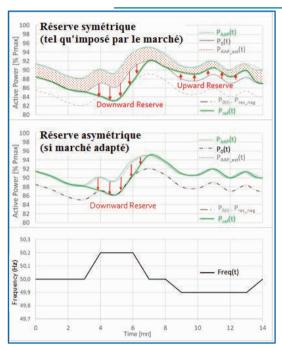


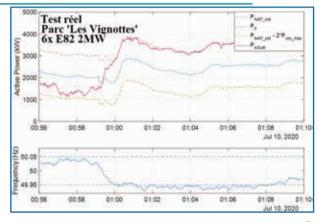
Intégration dans le réseau - L'innovation

Zoom sur le projet EU-sysFlex

EU-SysFlex est un consortium de **34 membres** comprenant des opérateurs de transmission et de distribution, des agrégateurs et des fournisseurs de technologies. Ils sont présents dans **15 pays européens**.

Ce projet a pour objectif d'établir des **recommandations** sur les **évolutions des design** (mécanismes) de marché et du **cadre réglementaire**. Il s'étend sur 4 ans (2017 – 2021) avec des financements s'élevant à **20 millions €**.




100

Intégration dans le réseau - L'innovation

Zoom sur le projet EU-sysFlex

Fourniture de Réserve Primaire (FCR) testée avec succès sur un parc éolien

☐ Capacité technique de l'éolien à contribuer à la réserve primaire (FCR) a été prouvée (Projet EU-SysFlex/Démo France)

Le marché doit être adapté pour tenir compte des spécificités des ENRs (symétrie du produit FCR entre autres)

101

Intégration dans le réseau I Focus RTE/AIE I Focus innovation I Focus formation I La flexibilité I La R&D I Couplage avec le stockage I Respect de la biodiversité I L'économie circulaire

Intégration dans le réseau - Formation

RTE anticipe l'avenir au travers de sa formation

Afin d'anticiper l'ensemble des transformations à venir – économiques, technologiques, démographiques et sociétales – et conformément aux orientations du projet d'entreprise, les axes de formation de RTE sont régulièrement mis à jour. Pour la période 2020-2022 les axes visent à consolider le socle actuel des compétences fondamentales tout en l'adaptant aux nouvelles technologies (objets connectés, traitement des données...), aux nouvelles façons de travailler (drones...), aux nouveaux champs d'intervention (liaisons sous-marines, liaisons haute tension à courant continu...) et à l'intégration de la RSE dans les formations métiers (écoute et dialogue avec les parties prenantes, développement des compétences environnementales, dont la démarche d'écoconception, renforcement de la culture sécurité au travail...).

Le campus de formation de RTE, situé à Jonage (région lyonnaise), accueillera plusieurs milliers de stagiaires chaque année. Aujourd'hui, c'est déjà plus 7000 salariés qui sont formés chaque année.

Depuis le début de l'année 2021, le Campus Transfo de Jonage accueille également les répliques des stations de conversation HVDC. Fortement tourné vers l'externe, il ouvre de nouvelles perspectives pour la mise en œuvre de partenariats/collaborations avec des industriels et la mise en place de formations collaboratives sur ces technologies.

La transformation du système électrique conduit RTE à se gréer en conséquence de nouvelles compétences. Le Campus Transfo permet de répondre à deux axes fondamentaux : la formation des salariés, au contact de l'expertise métier la plus avancée, ainsi que l'ouverture à des partenaires externes (GRT européens, constructeurs, prestataires, monde numérique, universitaires) permettant de nouvelles collaborations pour développer les outils de pilotage du réseau futur et de construire les compétences de demain. Le troisième axe mené par RTE est celui du recrutement, avec près de 250 personnes par an. Des profils de data-scientists, de développeurs s'ajoutent aux profils existants d'ingénieurs et techniciens issus des filières électro-technique et SI. Ils permettent ainsi à RTE de construire les métiers de demain. Ceux-ci sont par exemple liés à la numérisation de l'outil industriel (conduite, contrôle commande), à la cyber-sécurité, à l'importance croissante des technologies HVDC et d'électronique de puissance ou encore à l'arrivée des parcs éoliens offshore.

Intégration dans le réseau [Focus RTE/AIE [Focus innovation] Focus formation [La flexibilité [La R&D [Couplage avec le stockage [Respect de la biodiversité [L'économie circulaire

Intégration dans le réseau - Formation

Enedis renforce la formation de ses collaborateurs pour accompagner la transition écologique.

Aujourd'hui, près de 90% du parc EnR français est raccordé sur le réseau opéré par Enedis. Pour accompagner cette transition écologique et répondre aux nouveaux besoins clients et réseaux associés. Enedis renforce et adapte les parcours de formation de ses collaborateurs

Après des premiers travaux engagés en 2020. Enedis renouvelle en 2021 ses parcours de formation à destination des métiers des études et du raccordement avec près de 67 000 heures dispensées à travers ses campus dont 2150 heures entièrement dédiées à la transition énergétique.

Un volet *Conception* est consacré aux formations liées à la transition énergétique dans l'optique de repenser les séquences pédagogiques en intégrant les nouveaux outils liées au développement des réseaux et des offres de raccordement alternatives à modulation de puissance (ORI), ambition du Plan Industriel et Humain d'Enedis. En particulier. Enedis propose un nouveau parcours d'entrée en lien avec les activités des 7 Agences Raccordement Grands Producteurs, interlocuteurs dédiés aux raccordement de sites de production de plus de 250 kW.

Enedis réaffirme son engagement en faveur de l'apprentissage et la transmission des savoir-faire au sein de l'entreprise, fil rouge du Projet Industriel et Humain 2020-2025 avec par exemple le proiet de modernisation d'un de ses campus, La Pérollière, lancé en 2021.

La conduite des réseaux HTA et des postes sources s'est dotée, quant à elle, d'une formation adaptée à ces nouveaux enjeux, en particulier sur la gestion prévisionnelle de la production décentralisée et intermittente (planification, programmation et temps réel) : des compétences qui sont désormais regroupées au sein d'un nouveau métier, celui du « Référent Conduite ».

Les enjeux de la flexibilité

Le recours aux flexibilités de production est amené à se généraliser en raison de l'intégration croissante des énergies renouvelables sur le réseau

Intégration dans le réseau [Focus RTE/AIE [Focus innovation] Focus formation [La flexibilité] La R&D [Couplage avec le stockage] Respect de la biodiversité] L'économie circulaire

Les gestionnaires de réseaux, avec la collaboration des producteurs, ont étudié la possibilité d'avoir recours à la pilotabilité en temps réel des EnR pour optimiser le besoin d'évolution des réseaux en tirant profit notamment du foisonnement des énergies solaires et éoliennes. Les premiers résultats permettent d'entrevoir que l'activation ponctuelle de flexibilités de production peut dans certains cas alléger la consistance des travaux d'évolution des réseaux électriques pour l'intégration des EnR à trois niveaux :

- Au niveau du réseau de transport, en soulageant des congestions ponctuelles sur les lignes et transformateurs, permettant ainsi de limiter les besoins d'évolutions de réseau structurelles dans les S3REnR :
- Au niveau du réseau de distribution, en optimisant le transit dans les transformateurs ;
- Au niveau des ouvrages propres, en dimensionnant au mieux les raccordements des EnR via des offres de raccordement alternative (ORA) à modulation de puissance

Le gain d'avoir recours ponctuellement à ces flexibilités de production serait de deux ordres :

- 1. un gain matériel et économique, en installant moins de transformateurs et de linéaire de câble et en exploitant les infrastructures existantes au plus près de leurs limites techniques;
- 2. un gain de temps, en réduisant les délais de raccordement pour les producteurs se trouvant à proximité d'infrastructures existantes disposant, grâce au recours à ces flexibilités, de capacités d'accueil résiduelles.

Source: Valoriser les flexibilités de production pour intégrer les EnR aux réseaux électriques, UFE, FEE, SER, RTE, Enedis, 2019

Les enjeux de la flexibilité

Les Automates d'écrêtements ponctuels de la production EnR – un choix économique favorable au développement des EnR

Le projet NAZA (Nouveaux Automates de Zone Adaptatifs) est un projet ambitieux porté par RTE afin de pousser plus loin l'optimisation des infrastructures existantes du réseau électrique.

Ces automates permettront d'optimiser la contribution des EnR au Système Electrique en modulant leur production à la baisse. Ceci vient accroître, toutes choses étant égales par ailleurs, les capacités d'accueil des réseaux de répartition, sans pour autant retarder la mise en œuvre des ouvrages structurants.

«Les automates de zone représentent une brique essentielle de la stratégie de numérisation de RTE, au service de la transition énergétique. Ils concrétisent notre volonté de doubler notre réseau d'infrastructures physique d'un réseau numérique afin d'optimiser l'utilisation du réseau de transport. » Responsable du projet chez RTE

Dans les quinze prochaines années, RTE prévoit le déploiement de 180 automates de zone

Intégration dans le réseau [Focus RTE/AIE [Focus innovation] Focus formation [La flexibilité] La R&D [Couplage avec le stockage] Respect de la biodiversité] L'économie circulaire

Cette perspective s'appuie sur des **expérimentations** m e n é e s actuellement dans certaines régions marquées par un développement important de l'éolien, comme la Nouvelle Aquitaine ou les Hauts-de-France.

Cette stratégie, dont lecatalyseur est le renforcement de l'ossature numérique (systèmes d'information, numérisation des contrôles-commandes dans les postes renforcement des liens télécoms dans les postes stratégiques), permet d'éviter de nombreux investissements dans les réseaux de répartition.

Les Automates de zone permettront de soutenir les transitions énergétiques et environnementales et permettront d'exploiter le réseau de transport au plus proche de ses limites sans dégrader le niveau de risque actuel.

En parallèle des aspects techniques, des réflexions sont menées sur les aspects contractuels d'appel à ce genre de dispositif.

Eléments clés

Dates: depuis 2017

Budget : 120 M€ de coût de déploiement

(15 prochaines années)

Lieu : expérimentation en cours sur les

zones de

Melle Longchamp (zone de Niort / Poitiers / Limoges / Angoulême)

Jalancourt (Côte d'Or)
Ventavon (Hautes-Alpes)

Point sur le projet : les expérimentations permettent d'envisager la phase

d'industrialisation de la solution afin de pouvoir la déployer sur l'ensemble du territoire, dans les zones présentant des contraintes de transit.

«L'arrivée des automates NAZA va nous permettre d'améliorer la gestion du réseau de répartition dans les zones à fort développement EnR, où les contraintes de transit sont de plus en plus nombreuses. », chargé d'affaires au service Exploitation.

Les enjeux de la flexibilité

RINGO – Expérimentation sur les services offerts par une solution de stockage

Le projet RINGO vise à expérimenter de nouvelles flexibilités pour le système électrique qui seront nécessaires afin d'accélérer la transition énergétique.

Il propose d'expérimenter l'identification de « trop pleins » d'électricité d'origine renouvelable et de les stocker dans des batteries stationnaires pour gérer les flux d'électricité sur le réseau de transport de façon automatique.

Le projet RINGO s'articule autour de 3 sites pilotes, la réalisation de ces trois sites étant confiée à 3 groupements de constructeurs différents expérimentant chacun des technologies différentes :

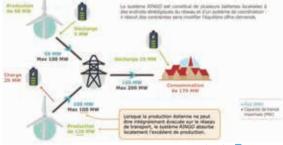
- Vingeanne en Côte d'Or (12 MW et 37 MWh) est réalisé par NIDEC ASI. Il a été inauguré en juillet 2021.
- Ventavon dans les Hautes-Alpes (10 MW et 30,2 MWh) est réalisé par Blue Solutions (groupe Bolloré), SCLE SFE et Engie Solutions
- Bellac en Haute-Vienne (10 MW et 30,8 MWh) est réalisé par Saft et Schneider Flectric

L'objectif du projet est de démontrer la faisabilité de l'utilisation de batteries de grande taille pour gérer automatiquement les congestions dues aux pics de production des énergies renouvelables et d'acquérir une expertise de pilotage sur ces batteries. Ainsi, lors du déploiement à grande échelle par des investisseurs indépendants, RTE sera en mesure d'accueillir, de piloter, et donc de tirer le meilleur parti de ces dispositifs de flexibilité.

Eléments clés

Dates: Phase Fluides: 2017-2019

Phase Travaux: 2020-2022


Phase Expérimentation: 2022-2024

Budget: 80 M€ Lieu · 3 sites en France Partenaires du projet :

Intégration dans le réseau [Focus RTE/AIE [Focus innovation] Focus formation] La flexibilité [La R&D] Couplage avec le stockage [Respect de la biodiversité] L'économie circulaire

La recherche et le développement (R&D)

L'éolien en mer renforce l'effort de R&D, positionnant la filière française comme acteur clé dans un environnement international

Le développement de l'éolien en mer renforce les efforts de R&D des acteurs français sur des problématiques de conception de systèmes, permettant à ces derniers de viser les places de leaders, sur un périmètre international. Les activités de R&D onshore se focalisent plutôt sur la performance des machines et les parcs.

Éolien en général

- Recyclabilité des parcs
- Amélioration acoustiques (« peignes »)

Sur terre

- Prévision du potentiel : Lidars, outils de simulations court-moyen terme
- Gestion des énergies variables et prédictibles
- Pertes aérodynamiques
- Interaction radars
- · Augmentation de la taille des rotors et mâts
- Réduction des coûts en matières premières

En mer

Des enjeux de conquête de marchés en concevant les futurs systèmes éoliens (dont flottant)

- Association de compétences navales / Oil&gas
- Structures et conditions marines Impact des fondations
- Vieillissement des matériaux
- Outils de simulation
- Analyse des phénomènes couplés, nécessitants des moyens d'essais

Les activités de R&D **rassemblent acteurs publics et privés autours de projets de recherche.** En particulier, grâce au budget de 100 Mds€ du plan de relance (dont 20 Mds€ pour le P.I.A. 4 initié en janvier 2021 et prévu sur la période 2021-2025), dont une partie est dédiée à la transition énergétique, **l'ADEME constitue un catalyseur significatif pour diminuer le risque** des projets au stade de démonstrateurs en attribuant des fonds.

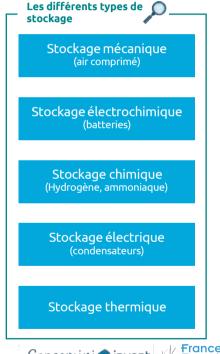
Capgemini invent

Cartographie des acteurs de la R&D

Capgemini invent

108

Couplage avec le stockage


Les solutions de stockage des énergies renouvelables sont un enjeu clé

pour le mix électrique de demain

Le 23 avril 2020, la France s'est dotée d'une nouvelle stratégie énergie climat. La PPE pour les périodes 2019-2023 et 2024-2028 a ainsi été publiée au Journal officiel. Le stockage y est mentionné sans que ne soit établi une feuille de route précise malgré l'enjeu majeur qu'il représente en raison du développement des énergies renouvelables.

En 2023, l'électricité d'origine renouvelable devrait représenter 27% de la production électrique et 33 à 36% d'ici 2028. Cependant la PPE le répète : « A l'horizon de la PPE, en 2028, avec la pénétration des énergies renouvelables et l'évolution du mix électrique fixées par la présente PPE, il n'y a pas de besoins additionnels de stockage pour assurer l'équilibre offre demande.»

Et si la PPE identifie bien l'hydrogène comme «le moyen de stockage massif inter-saisonnier des énergies renouvelables électriques intermittentes le plus prometteur » le texte repousse à 2035 voire 2040 son développement. Il faudrait attendre « au-delà de 2030-2035 », pour que l'hydrogène contribue à l'intégration des énergies renouvelables au système électrique. Néanmoins des premiers projets émergent et le secteur du couplage de la production d'énergie renouvelable avec stockage s'organise.

Respect de la biodiversité

La protection de la biodiversité, un axe prioritaire pour la filière lors du développement et de l'exploitation de parcs éoliens mais également en recherche-développement

Conscient que le développement de l'éolien est à la fois un pilier de la transition énergétique et un vecteur d'impacts potentiels pour la biodiversité, les développeurs et exploitants de parcs éoliens travaillent avec les associations et organismes de protection de la nature pour un développement plus harmonieux de l'énergie éolienne en France.

Lors de l'implantation d'un parc éolien de nombreuses mesures sont prises pour protéger la biodiversité et limiter l'impact des éoliennes notamment pour l'avifaune et les chiroptères.

La filière attache une importance aux mesures d'accompagnement (installations de nichoirs, aides à la reconquête de territoire, financement de balisage) en plus des mesures réglementaires prévues dans le cadre des mesures ERC (éviter-réduire compenser).

Individuellement ou par l'intermédiaire des associations professionnelles, la filière éolienne a déià financé des centaines de thèses et études de recherches et développement sur les connaissances et les technologies qui sont développées.

En 2020, a notamment été lancé le projet de recherche multi-acteurs et collaboratif «Réduction de la Mortalité Aviaire dans les Parcs Éoliens en exploitation», dit projet MAPE. Ce projet, financé sur 3 ans (2020-2023) par les secteurs publics et privés, réunit pour la première fois l'ensemble des acteurs concernés par la problématique, grâce à une démarche innovante, portée par la Maison des Sciences de l'Homme SUD (MSH SUD).

Intégration dans le réseau [Focus RTE/AIE [Focus innovation] Focus formation [La flexibilité] La R&D [Couplage avec le stockage | Respect de la biodiversité] L'économie circulaire

Respect de la biodiversité

Focus : parc éolien de Saint-Arnac à Fenouillèdes - un parc éolien au soutien de la biodiversité locale

Dans le cadre du développement de ce parc éolien de 11 machines, Valeco a souhaité faire de ce projet un exemple en matière d'intégration environnemental. Cela, en s'engageant à mettre en place des mesures d'accompagnement au niveau du site d'implantation des éoliennes et à l'échelle de la Communauté de Communes. Le Massif de la Tourèze, zone sur laquelle est implanté le parc, est un territoire classé « ZPS – Natura 2000 » et qui est attractif pour l'Aigle de Bonelli.

Un **investissement** du parc éolien de Fenouillèdes **de 575 000€** pour lutter contre les menaces de disparition des milieux naturels importants pour la biodiversité de ce territoire

En 2020, une série d'actions ont été mises en place en partenariat avec le CEN, le PNR, la chambre d'agriculture, la Fédération des chasseurs, l'Association de défense du Massif de la Tourèze, l'ACCA, la Mairie de Latour-de-France et ENEDIS :

- **Restaurer plus de 230 hectares** de mosaïques de garrigues et de pelouses sèches (milieux favorables à l'Aigle de Bonelli). Cette action s'est ajoutée à l'entretien d'espaces recréés par un troupeau ovin, luimême capacle de réguler l'évolution naturelle des végétaux.
- Identifier et sécuriser près de 15km de lignes électriques (totalement indépendantes du réseau, enterré, du parc éolien) de moyenne tension identifiées comme dangereuses pour les rapaces. Cette sécurisation a permis de neutraliser le risque d'électrocution au niveau des pylône.

A moyen et long terme, ces mesures se traduiront par :

- l'augmentation de la diversité florale et faunistique
- la réduction significative du risque de mortalité accidentelle de l'avifaune,
- l'amélioration du cycle biologique d'une multitude d'espèces menacées, emblématiques des milieux ouverts.

Economie circulaire

L'exploitant gère l'ensemble du processus de gestion de la fin de vie des installations (démontage, recyclage)

Les opérations de gestion de fin de vie des installations éoliennes sont strictement encadrées par la loi* (arrêté ministériel de prescriptions générales - AMPG) et comprennent l'ensemble du processus de démontage et de recyclage des déchets des composants :

- Le démontage des installations de production d'électricité, des postes de livraison ainsi que les câbles dans un rayon de dix mètres autour des éoliennes et des postes de livraison doit être effectué.
- Les fondations doivent être « excavées dans leur totalité « jusqu'à la base de leur semelle, à l'exception des éventuels pieux , et remplacées par des terres de caractéristiques comparables aux terres en place à proximité de l'installation.
- Le décaissement des aires de grutage et des chemins d'accès doit être comblé par des terres de caractéristiques comparable aux terres à proximité de l'installation
- Des obligations de recyclage sont fixées: à partir du 1^{er}juillet 2022, au minimum 90 % de la masse totale des éoliennes devront être recyclés ou réutilisés, fondations incluses (ou 85 % lorsque l'excavation totale des fondations fait l'objet d'une dérogation du Préfet), ainsi qu'au minimum 35 % de la masse des rotors.

De la même manière, des obligations de recyclabilité sont également prévues par l'AMPG du 22 juin 2020 : pour les dossiers de demandes d'autorisations déposés à partir de 2023 et progressivement jusqu'à 2025, les taux de réutilisation et de recyclabilité seront portés jusqu'à 95% de la masse totale de l'éolienne (fondations incluses) et jusqu'à 55% de la masse du rotor.

Les éoliennes sont des installations classées pour la protection de l'environnement (ICPE), ce qui nécessite que la question du démontage soit totalement anticipée. En cas de défaillance de l'exploitant, ce qui ne s'est à ce jour jamais produit en France, les opérations de remise en l'état du site sont couvertes par des garanties financières d'exploitation, préalables à la mise en activité d'une installation et fixées à 50 000€ par éolienne de 2MW et 10 000€ par MW supplémentaire lorsque la puissance unitaire est supérieure à 2 MW**. Les modalités de constitution des garanties sont définies par le Code de l'Environnement.

« Les déchets de démolition et de démantèlement sont réutilisés, recyclés, valorisés, ou, à défaut, éliminés dans les filières dûment autorisées à cet effet ».

*Article R. 553-6 du code de l'environnement (arrêté du 26 août 2011, modifié le 06.11.2014) – Arrêté du 22 juin 2020, publié au JORF le 30 juin 2020, entré en vigueur le 1_{er} juillet 2020.

** Les premiers démontages réalisés en France confirment cet ordre de grandeur.

Capgemini invent %

Economie circulaire

Plusieurs constructeurs d'éoliennes visent un objectif « zéro déchet » et la neutralité carbone sur l'ensemble de leur chaîne de valeur

Les constructeurs s'engagent également à devenir neutre en carbone.

Cela passe par l'établissement d'une stratégie basée sur :

1. L'augmentation de l'efficacité énergétique dans les usines

- 2. L'approvisionnement en électricité d'origine renouvelable des bureaux et des usines
- 3. Renouveler la flotte des véhicules professionnels du thermique à l'électrique et utiliser des transports peu émetteurs en CO2 (maritime, ferroviaire)
- 4. Augmenter la recyclabilité des éoliennes

Plusieurs constructeurs prennent ainsi des engagements forts afin de réduire l'impact environnemental des projets éoliens. Afin de quantifier le coût environnemental des parcs, ces entreprises mènent des analyses de cycle de vie (ACV) afin d'identifier sur chacun des maillons de la chaîne de valeur (voir ci-contre), les émissions de CO2 associées et de les réduire au maximum. Cela passe par des procédés innovants, de nouvelles méthodes de travail et une feuille de route qui établit des objectifs de réduction précis à atteindre d'ici 2030 puis 2050.

Ainsi, à titre d'exemple, des constructeurs s'engagent à concevoir des **éoliennes zéro déchets d'ici 2040** et à améliorer leur processus de production afin d'utiliser des pièces qui puissent être recyclées ou conçues en consommant moins d'énergie.

Source : FEE

^{*} Le groupe Suez atteint un niveau de recyclage / valorisation de 98% sur les chantiers de démantèlement de Port-La-Nouvelle.

Intégration dans le réseau [Focus RTE/AIE [Focus innovation] Focus formation] La flexibilité [La R&D [Couplage avec le stockage] Respect de la biodiversité [L'économie circulaire]

Economie circulaire

Repowering, revamping, retrofit: tour d'horizon

Il existe 3 catégories de renouvellement d'un parc éolien :

La maintenance lourde (retrofit) : consiste à remplacer certains composants de l'éolienne (pales, générateur, etc.) afin de la moderniser. Cette évolution permet d'augmenter la durée de vie du parc grâce à du matériel plus récent, mais dans la même configuration et avec les mêmes dimensions.

Le réaménagement (revamping) : consiste à remplacer certains composants de l'éolienne. Ce remplacement est accompagné de modifications des caractéristiques principales de l'installation (dimensions des éoliennes, puissance, etc.)

Le renouvellement (repowering): consister à remplacer de façon totale ou partielle l'installation, dans une optique d'amélioration des performances. Il entraîne de ce fait des modifications des caractéristiques principales de l'installation (dimensions des éoliennes, puissance, extension du parc, emplacements, etc.).

Les objectifs du renouvellement sont multiples :

Augmenter la production d'électricité d'un site en valeur absolue mais aussi grâce à des composants plus modernes capables de capter avec plus d'efficacité la force du vent

Prolonger la durée de vie d'un parc par le remplacement de certains composants qui se détériorent plus rapidement que d'autres pièces ou établir un nouveau parc plus performant grâce aux dernières technologies commercialisées

Réduire les coûts d'exploitation liés à la maintenance grâce à un matériel moderne et plus fiable.

Selon l'ADEME, **la puissance installée éolienne qui pourrait être gagnée à l'horizon 2030** par le remplacement des éoliennes existantes par des éoliennes plus puissantes **est estimée à plus de 5 GW.**

Source: Enerfip, Capgemini Invent

Intégration dans le réseau [Focus RTE/AIE [Focus innovation] Focus formation] La flexibilité [La R&D [Couplage avec le stockage] Respect de la biodiversité [L'économie circulaire]

Economie circulaire

Focus: parc de Rivesaltes – plus ancien parc éolien des Pyrénées-Orientales

Le parc de Rivesaltes fut le tout premier parc mis en service dans les Pyrénées-Orientales il y a près de 20 ans. Aujourd'hui les opérations de Repowering ont commencé et visent à remplacer les éoliennes existantes par des éoliennes plus puissantes, plus performantes et plus respectueuses de l'environnement. En 2021, le chantier se concentre uniquement sur le démontage des parties aériennes et c'est en 2022 que le travail sur le démantèlement de la partie sous-sol débutera.

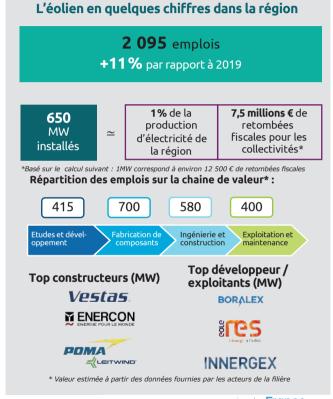
	Parc actuel	Parc à venir
Éoliennes	8	6 (- 2 éoliennes)
Puissance installée du parc	7,6 MW	9,9 MW (+2,3MW)
Consommation électrique de	6 500 habitants	11 600 habitants (+ 5 100 habitants)

95% des matériaux vont être recyclés.

Le béton va être concassé et être utilisé pour le terrassement, l'acier des mâts va être fondu pour faire des nouvelles pièces et la nacelle va être utilisée pour faire du retrofit. Concernant les pales, elles pourront être utilisées pour la confection de mobilier urbain.

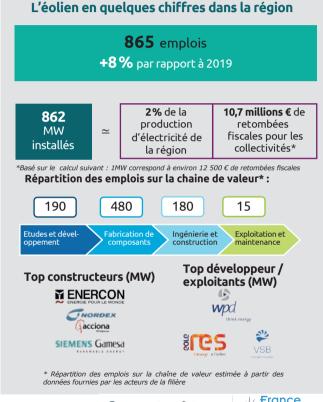
Sources: france3-régions & energies-renouvelables.geg.fr

A. Cartes de l'implantation du tissu éolien en régions

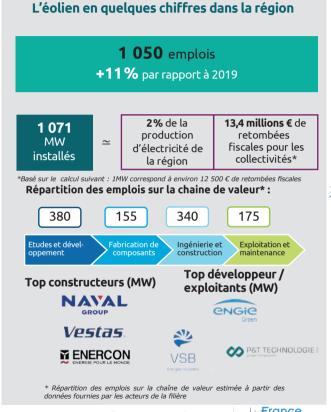

Auvergne-Rhône-Alpes

- 1. Etudes et Développement 2. Fabrication de composants
- - 3. Ingénierie et Construction
- 4. Exploitation et Maintenance

NB: Logos non exhaustifs, entreprises multi-sites



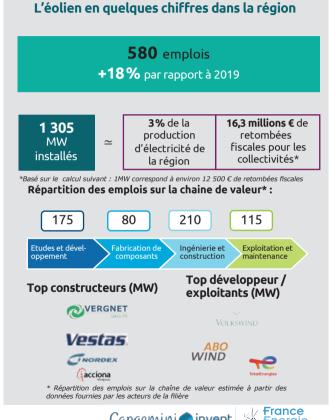
Bourgogne-Franche-Comté


Bretagne

- 1. Etudes et Développement
- 2. Fabrication de composants
- 3. Ingénierie et Construction
- 4. Exploitation et Maintenance

NB: Logos non exhaustifs, entreprises multi-sites

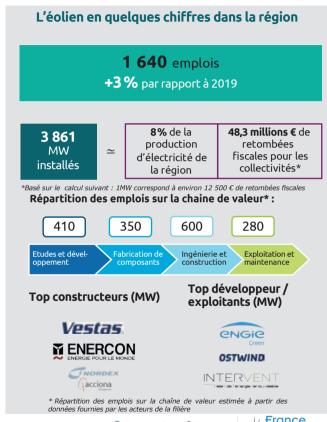
- → Parc éolien
- → Parc éolien marin posé
- ★ Ferme pilote éolienne flottante
- Centre de maintenance


Centre-Val de Loire

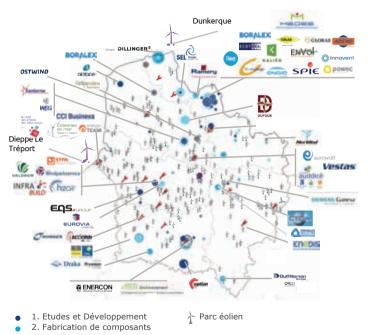
- 1. Etudes et Développement
 2. Enbrisation de composant
- 2. Fabrication de composants
- 3. Ingénierie et Construction
 4. Exploitation et Maintenant
- 4. Exploitation et Maintenance

NB : Logos non exhaustifs, entreprises multi-sites

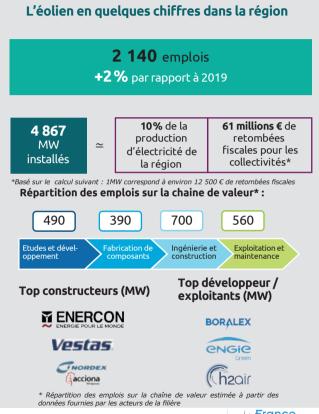
→ Parc éolien


Grand Est

- 2. Exhrication do composant
- 2. Fabrication de composants
- 3. Ingénierie et Construction
- 4. Exploitation et Maintenance

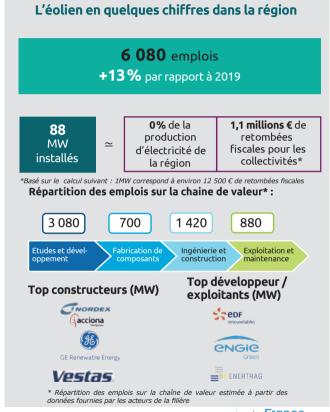

∠ Centre de maintenance

NB : Logos non exhaustifs, entreprises multi-sites

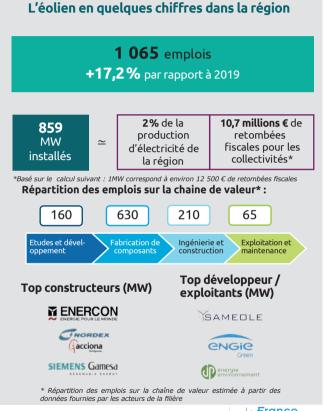

Hauts-de-France

- Ingénierie et Construction
- 4. Exploitation et Maintenance

NB : Logos non exhaustifs, entreprises multi-sites


∠ Centre de maintenance

Ile-de-France



Normandie

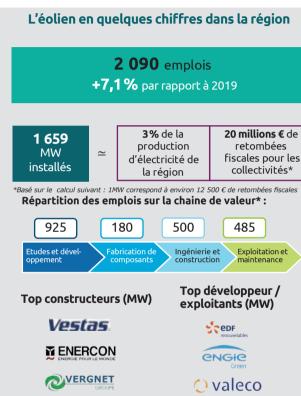
Nouvelle-Aquitaine

▲ Centre de maintenance

- 1. Etudes et Développement
- 2. Fabrication de composants
- 3. Ingénierie et Construction
- 4. Exploitation et Maintenance

NB: Logos non exhaustifs, entreprises multi-sites

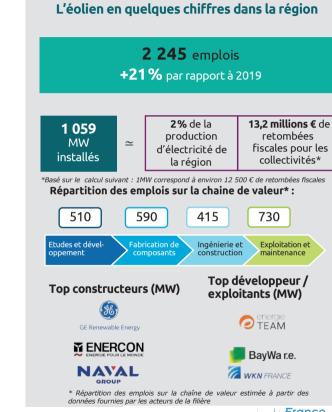
L'éolien en quelques chiffres dans la région


Occitanie

- 1. Etudes et Développement
- 2. Fabrication de composants
 - 3. Ingénierie et Construction
- 4. Exploitation et Maintenance
- → Parc éolien
- Ferme pilote éolienne flottante

NB : Logos non exhaustifs, entreprises multi-sites

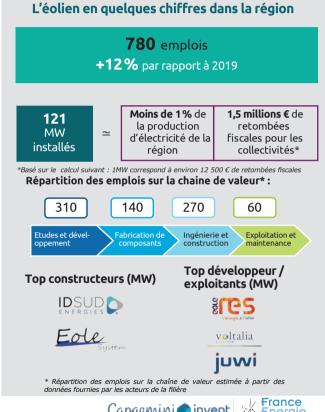
Source: RTE Bilan électrique 2020



Pays de la Loire

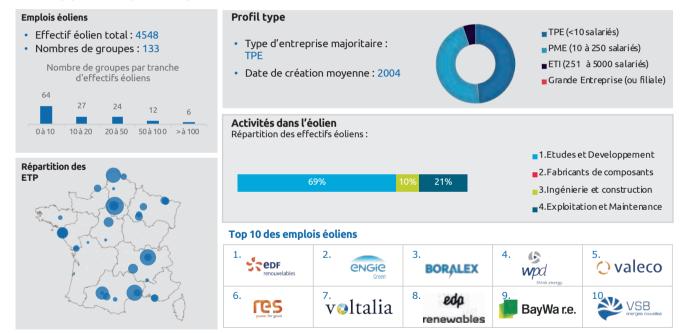
- 2. Fabrication de composants
- 3. Ingénierie et Construction
- 4. Exploitation et Maintenance

NB: Logos non exhaustifs, entreprises multi-sites

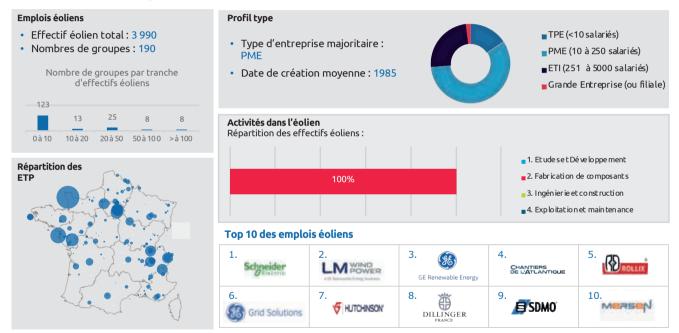

Provence-Alpes-Côte d'Azur

- 1. Etudes et Développement
- 2. Fabrication de composants
- 3. Ingénierie et Construction
- 4. Exploitation et Maintenance

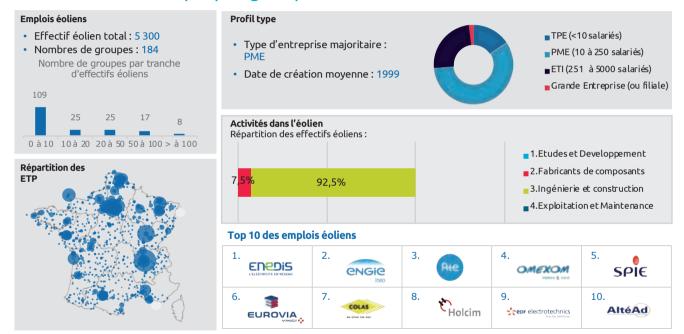
NB : Logos non exhaustifs, entreprises multi-sites



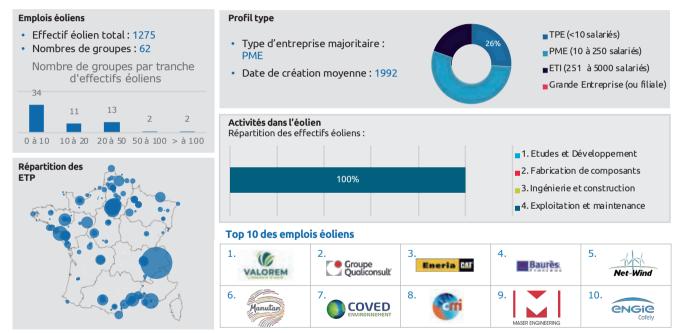
Développeur et/ou exploitant



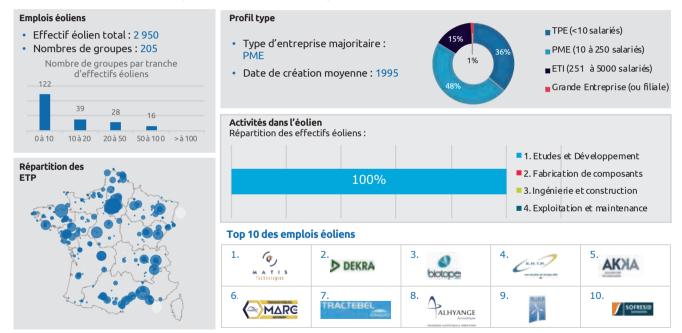
Constructeur de Machines et activités de maintenance



Fabricant de Composants



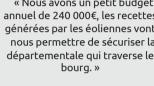
Génie civil ou électrique / Logistique



Maintenance (hors constructeurs)

Bureaux d'études, Expertise & autres prestataires

C. Apports de la filière– Témoignages d'élus


Les retombées économiques et fiscales pour les collectivités locales

Focus sur la ville de La-Chapelle-au-Mans (250 hab.)

« Nous avons un petit budget annuel de 240 000€, les recettes générées par les éoliennes vont nous permettre de sécuriser la départementale qui traverse le bourg. »

Armelle Devillard. Maire de La chapelle-au-Mans (Saône et Loire)

Fiche parcs

- Consommation couverte: 5 000 fovers
- CO₂ évité: 10 523 tonnes de CO₂

Parc éolien de La Chapelle au Mans (Photo JSL /Alain LARDRY)

Bilan économique pour les collectivités locales et les entreprises

Recettes fiscales pour la de communes

32 000€/an

Utilisation des chemins et survol des pâles

30 000€/an

Exonération totale des taxes sur les nouvelles entreprises pendant 2 ans

Recettes pour la communauté de communes

83 000€/an

Les retombées économiques et fiscales pour les collectivités locales

Focus sur la ville d'Ally (145 hab.)

« Nous gérons nous-mêmes notre eau. Aujourd'hui, grâce à la présence d'éoliennes sur notre commune, le prix du m³ d'eau n'a pas changé (0,75€/m³) et est bien en dessous de la moyenne nationale. »

Fiche parcs *

- Puissance installée: 39 MW
- Production électrique annuelle moyenne estimée : 90 000 MWh*
- Consommation couverte: 19 100 foyers*
- CO₂ évité : 30 000 tonnes de CO₂

Jean-Louis Portal, Maire d'Allv (Haute-Loire)

Recettes fiscales pour la commune 50 000€ / an

Recettes liées au survol des parcelles (à destination des propriétaires)

1 000€/parcelle/an

Recettes pour le département

90 000€/an

Recettes pour la communauté de communes

+ de 150 000€/an

Création d'emplois sur le territoire avec l'arrivée de Boralex pour l'installation et la maintenance du parc

* Les données sont issues de calculs théoriques à partir de la puissance installée et d'une étude sur d'autres communes

Les retombées économiques et fiscales pour les collectivités locales

Focus sur la ville de Benet (4 000 hab.)

Daniel David, Maire de Benet (Vendée)

« Les éoliennes amènent du développement économique dans des communes isolées comme la nôtre. Cette énergie pourrait être valorisée pour favoriser le développement d'implantations d'entreprises à proximité. »

Fiche parcs

CO₂ évité : 19 100 tonnes de CO₂

Eolienne de la ville de Benet (Photo The wind power)

Bilan économique pour les collectivités locales

20 000€/an

L'arrivée des éoliennes sur le territoire a permis la **création d'emplois de maintenance locaux** Recettes pour le département

30 000€/an

Recettes pour la communauté de communes

200 000€/an

Le développement des services publics

La création ou l'entretien des routes est une dépense importante pour les communes. Les recettes fiscales issues de l'implantation des parcs peuvent permettre de répondre à ce besoin

Armelle Devillard, Maire de La chapelle-au-Mans (Saône et Loire)

« La rénovation d'1 kilomètre de route nécessite un investissement de 30 000€. Cet investissement, qui jusqu'à aujourd'hui nous était impossible, nous a été permis grâce aux retombées fiscales du parc éolien. »

Jean-Louis Portal, Maire d'Ally (Haute-Loire) « Au sein de notre commune nous disposons de 42 kilomètres de routes. Aujourd'hui, le facteur refuse de descendre le village car la route est trop endommagée. Les retombées fiscales du parc vont nous permettre de remédier à ce problème ».

Autres exemples de rénovation de voirie dans les territoires

- Rénovation de la voirie générale Savières (Aube)
- Aménagement de la chaussée pour sécuriser la traversée du centre bourg La Faye (Charente)
- Rénovation des trottoirs Dampierre-sur-Moivre (Marne)

Sources: « Paroles d'élus » France Energie Eolienne

D. Répartition des emplois par région par maillon de la chaîne de valeur

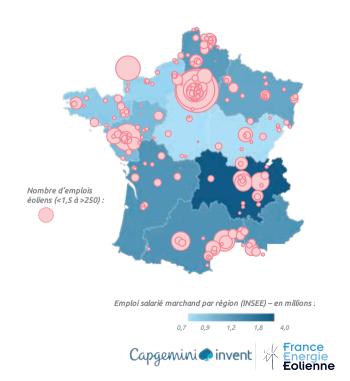
Détail par maillon de la chaîne de valeur

La chaine de valeur de l'éolien est multi-métier et intégré

Les emplois éoliens se répartissent sur une chaîne de valeur complexe et diversifiée, depuis des structures spécialisées, positionnées sur un des différents maillons de la chaîne de valeur, jusqu'aux acteurs intégrés couvrant plusieurs types d'activités.

	Etudes et Développement	Fabrication de composants	Ingénierie et Construction	Exploitation et Maintenance	
Bureau d'études & Expertise	\checkmark				
Constructeur de machines	\checkmark	\checkmark	\checkmark	\checkmark	
Développeur	\checkmark				
Développeur & Exploitant	\checkmark		\checkmark	\checkmark	
Exploitant				\checkmark	
Fabricant de composants		\checkmark			
Génie Civil et Electrique			\checkmark		
Logistique			\checkmark		
Maintenance				\checkmark	
Autres prestataires	\checkmark				

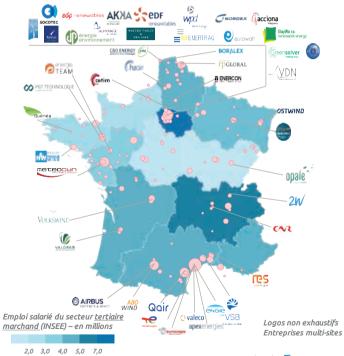
De nombreux services se sont développés avec les nouvelles possibilités offertes par la technologie et la règlementation. Du scaphandrier au développeur informatique en passant par le manager de plateforme participative, ils se sont répartis sur l'ensemble de cette chaine de valeur.



Plus la région est dynamique en termes d'emplois plus le secteur de l'éolien en profite

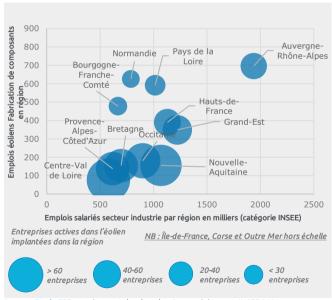
Contribution de la filière éolienne à l'emploi en région

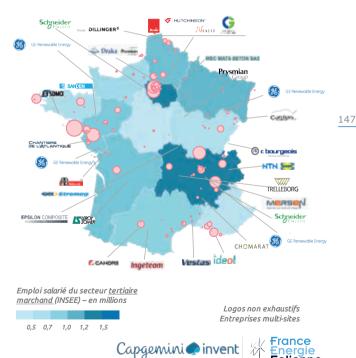



Source: Etude FEE et traitement des données Capgemini Invent, INSEE 2021

Les emplois **d'étude et développement** sont majoritairement présents autour des grands centres urbains

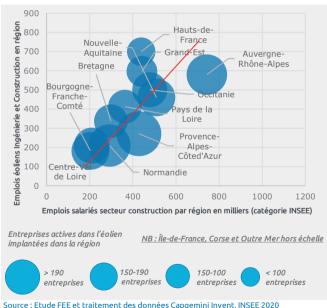
Les emplois éoliens liés aux activités d'études et développement par rapport aux emplois du secteur tertiaire marchand





La fabrication de composants génère 4500 emplois répartis sur tout le territoire

Les emplois éoliens liés à la fabrication de composants par rapport aux emplois du secteur industriel


Source : Etude FEE et traitement des données Capgemini Invent, INSEE 2021

Dans la construction, au moins un emploi pour mille est généré par l'éolien,

dans la grande majorité des régions

Les emplois éoliens liés à l'ingénierie et à la construction par rapport aux emplois du secteur construction

Les emplois de **maintenance et d'exploitation** se situent en majorité dans les régions avec de plus grandes capacités installées

Les emplois éoliens liés aux activités d'exploitation et maintenance par rapport à la puissance raccordée

Source: Etude FEE et traitement des données Capgemini Invent 2021, INSEE 2020

Annexes

E. Formation

150

Exemple de profil-type - emploi éolien

Amelia C.

÷

31 ans

Paris (75)

Cheffe de projet éolien

- Diplômée d'une école d'ingénieur, je dispose de 3 années d'expérience dans le développement de projets EnR
- Exercée à l'analyse et à la synthèse, j'ai également développé des compétences de management pour mener à bien mes projets
- Je dispose d'une grande autonomie dans le travail au quotidien

Missions

- Gérer le périmètre des projets avec une grande autonomie
- Organiser et animer des réunions de travail et de présentation
- Rendre compte de l'activité (rapport mensuel, outils de suivi)
- Assurer la concertation et l'information des parties prenantes territoriales des projets
- Participation à des veilles techniques, réglementaires et commerciales

Exemple de profil-type - emploi éolien

Patrick D.

28 ans

Aude (Occitanie – 11)

Technicien supérieur de maintenance

- Diplômé d'un Bac+2 en électrotechnique, je dispose de 2 années d'expérience dans la maintenance de systèmes électrotechniques, idéalement de systèmes éoliens
- J'apprécie particulièrement le travail en équipe et je suis sensible aux sujets environnementaux

Missions

- Contrôler, surveiller et entretenir régulièrement les équipements
- Détecter l'origine d'une panne (sur place ou à distance), établir un diagnostic
- Intervenir en cas de panne
- Proposer des solutions pour optimiser la sécurité et la performance des matériels

Zoom sur Tenerrdis

Tenerrdis est le pôle de compétitivité de la région Auvergne Rhône-Alpes, dédié à la transition énergétique visant, via l'innovation, à développer des filières d'excellence créatrices d'emplois pérennes.

Tenerrdis anime un réseau dynamique de 300 membres (dont 244 adhérents) et partenaires

- Industrie : Groupes industriels (énergéticiens et endusers), PME, Start Up
- · Laboratoires de recherche et centres techniques
- Collectivités territoriales

6 domaines d'activités stratégiques :

- Production d'énergie renouvelable et insertion dans le mix décarboné
- Intelligence et cybersécurité des systèmes énergétiques
- Stockage et conversion d'énergie
- Micro-réseaux multi-vecteurs
- Mobilité décarbonée
- Efficacité énergétique Bâtiment et Industrie

Tenerrdis agit sur les thématiques des nouvelles énergies entre acteurs du pôle et leurs partenaires :

- L'accompagnement de projets innovants, principalement collaboratif (régionaux, nationaux, européens) et l'aide à l'accès aux financement publics et privés
- La valorisation et la promotion des filières industrielles des nouvelles énergies, incluant l'internationalisation
- La **coordination** d'acteurs ouvrant l'ensemble des compétences techniques (matériaux, prévision météo, vieillissement des installations, stockage, hybridation)

Chiffres clés 2020:

- 244 adhérents, 15 nouveaux adhérents, 59% de PME, Start-Ups, TPE
- 58 adhérents concernés par la filière éolienne
- 948 projets soutenus ou labellisés
- 379 projets & démonstrateurs financés
- 3071 abonnés sur Twitter, 2720 abonnés sur LinkedIn

Concepteurs (BE, influenceurs)

Technologies

Produits

Intégration système

Client final

Exploitation

Sources: Tenerrdis

#

700m sur Cemater

Pour aider les entreprises de la région Occitanie dans leur développement et dans leur pérennisation, le groupement **Cemater** leur propose un **accompagnement** sur différents thèmes:

valorisation des compétences et des savoir-faire, développement commercial, recrutement, innovation, mutualisations intraentreprises,...

Les entreprises membres de Cemater se sont engagées à respecter une **Charte Ethique** qui garantit un niveau de qualité optimale à leurs clients. Les Composantes de la Charte éthique Cemater reposent sur les éléments suivants :

Conseil
Éducation
Mutualisation
Adaptation
Transparence
Engagement
Respect

Sources: Cemater

Zoom sur Le Cluster Maritime Français

Le Cluster Maritime Français (CMF) rassemble tous les acteurs de l'écosystème maritime, de l'industrie aux services et activités maritimes de toute nature dans un objectif de développement durable des activités maritimes. Il est aujourd'hui composé de plus de 430 entités: entreprises de toutes tailles, pôles de compétitivité, fédérations et associations, laboratoires et centres de recherche, écoles et organismes de formation, collectivités et acteurs économiques locaux, ainsi que de la Marine nationale. FEE est membre du CMF.

Le CMF est au service de ses membres, en tant que facilitateur pour le développement de leur business et l'émergence de nouveaux projets innovants. Il accompagne ses membres dans le développement durable et responsable de leurs activités et de leurs projets, en France et à l'international.

Depuis 2007, le CMF a contribué à la promotion et défense de la filière EMR auprès des décideurs, et à la création de synergies entre acteurs du maritime et de l'énergie.

Depuis 2017, le CMF a créé l'Observatoire des énergies de la mer auquel contribue la FEE. Consultez les résultats de la 5^{ème} édition sur www.merenergies.fr

La France possède aujourd'hui le 2ème espace maritime du monde : l'Outre-mer donne à la France 97% des 11 millions de kilomètres carrés de sa ZEE (Zone Économique Exclusive). Conscient des opportunités offertes par l'Outre-mer (notamment le développement des EMR), le CMF y a développé des clusters : Guadeloupe, Réunion, Guyane, Martinique, Polynésie Française, Nouvelle Calédonie et Saint-Pierre et Miquelon.

Zoom sur FOWT, le plus grand événement mondial dédié à l'éolien en mer flottant, co-organisé par FEE.

Depuis 2013, le Pôle Mer Méditerranée et la Chambre de Commerce et d'Industrie Marseille Provence co-organisent annuellement les Rencontres Scientifiques et Technologiques de l'Eolien Offshore Flottant contribuant à l'émergence de la filière. Depuis 2016, cette conférence se nomme désormais FOWT (Floating Offshore Wind Turbines) et France Energie Eolienne en est co-organisatrice.

FOWT présente une triple ambition : accélérer la part de l'éolien flottant dans le mix énergétique mondial ; soutenir la structuration d'un écosystème et encourager les échanges entre acteurs de la chaîne de valeur ; faire de FOWT la vitrine du savoir-faire international de l'industrie éolienne en mer flottant. FOWT 2021 se tient du 16 au 18 novembre 2021.

FOWT 2020 s'est tenu les 7 et 8 septembre 2020 à Marseille.

Quelles thématiques?

Financement, assurances, zoning, cadre réglementaire, impacts environnementaux, innovations technologiques...

Toutes ces thématiques sont abordées pendant les jours de conférences pour décrypter les enjeux liés à l'émergence et à l'industrialisation de l'éolien en mer flottant en France et dans le Monde.

Le meilleur de la science & le meilleur de la technologie

Afin d'assurer un programme varié et pertinent au cours des 3 jours, le comité d'organisation lance chaque année un « call for papers »W.

Parmi les intervenants de l'édition 2020 : Giles Dickson (WindEurope), Laurent Michel (Ministère de la Transition Ecologique / DGEC), et d'autres grands acteurs du marché comme Ideol, PPI, SBM Offshore, EDF EN, Equinor, Shizen Energy, Engie, Naval Energies, The Carbon Trust, Siemens Gamesa...

Informations sur www.fowt-conferences.com.

Eléments clés de l'événement (bilan édition 2020) :

Quatre régions partenaires : La Région Occitanie, la région Sud-Provence-Alpes-Côte d'Azur, la Région Bretagne et la Région Pays de la Loire • + de 40 sponsors & partenaires industriels et institutionnels• 2 journées de Conférences plénières • 1 journée académique (digitalisée) • + de 800 participants • 28 nationalités représentées • 500 rendez-vous BtoB / Meet the Buyers

Zoom sur le Cluster Neopolia Eolien Offshore & EMR

Le Cluster Neopolia Eolien offshore & EMR fédère plus **de 105 entreprises industrielles** qui unissent leurs savoir-faire pour répondre de façon collaborative aux besoins du marché des **énergies marines renouvelables** (EMR). Le Cluster fait partie du réseau **Neopolia composé de 5 clusters** présents dans la région **Pays de la Loire.**

Ce cluster a pour missions de renforcer les partenariats avec les grands acteurs du marché EMR, la construction d'un **réseau de compétences**, l'animation de la filière EMR au sein de la région Pays de la Loire avec la mise en contact d'acteurs de la filière en créant des rencontres business, des business trip ciblés , la commercialisation d'offres industrielles globales et collaboratives.

Neopolia EMR propose plusieurs solutions intégrées au service des projets EMR notamment :

- Ingénierie développement de projets
- · Support à l'installation en mer
- Opération & Maintenance
- System Health Monitoring
- EPCI* Fondations posées ou flottantes

Neopolia Eolien Offshore & EMR sera partenaire du 11ème colloque national éolien de FEE qui aura lieu les 13 et 14 octobre prochains.

^{*} EPCI = Engineering, Procurement, Construction, Installation

Zoom sur le pôle Mer Méditerranée

La zone méditerranéenne est un gisement important d'énergie éolienne, encore inexploité en France. Cependant, la bathymétrie ne permet que l'exploitation offshore flottante de ces gisements.

Présent dans les régions Sud Provence-Alpes-Côte d'Azur et Occitanie, le Pôle Mer Méditerranée intervient sur 6 Domaines d'Actions Stratégiques :

- Défense, Sécurité et sûreté maritimes
- Naval et nautisme
- Ressources biologiques marines
- Environnement et valorisation du littoral
- Ports, logistique et transports maritimes
- Ressources énergétiques et minières marines (englobant les problématiques de l'éolien en mer). Celui-ci se divise en
 - 59 projets financés et 82 projets labellisés pour les EMR
 - Avec un budget total de 188,62 M€

Sources: Pole mer méditerranée

Et 3 axes transverses:

- Transition écologique,
- Transformation numérique
- Robotique

Fort de 438 membres (Laboratoires, grands groupes, ETI et PME), le Pôle Mer Méditerranée anime depuis 2013 un travail de recensement des acteurs de la filière éolien flottant. Ce travail a permis d'identifier 582 acteurs potentiels dont 60 confirmés dans les régions SudProvence-Alpes-Côte d'Azur et Occitanie. 266 sont déjà membres du Pôle Mer Méditerranée.

Le Pôle Mer Méditerranée est par ailleurs co-organisateur des rencontres internationales de l'offshore flottant (FOWT), avec la CCI Marseille-Provence et France Energie Eolienne.

Zoom sur : Pépinière Entreprises Energies Renouvelables (Somme)

La Pépinière d'Entreprises Energies Renouvelables, positionnée géographiquement sur les régions Hauts-de-France et Normandie, contribue par ses actions opérationnelles auprès des PME industrielles, produits et services, au développement des filières éoliennes on- et offshore et autres énergies marines renouvelables (EMR).

Animation de la plateforme d'intermédiation donneurs d'ordre/preneurs d'ordre CCI Business EnR

- 2060 membres sur l'éolien posé, flottant, le marémoteur et l'hydrolien
- Actif sur l'ensemble de la façade maritime continentale française
- · Co-organisation d'événements

Accompagnement à la diversification dans l'éolien et les EMR

Accompagnement expert personnalisé de PME industrielles de Normandie et Hauts-de-France, à partir de la pépinière d'Oust-Marest (Somme / Seine-Maritime), dont 25 entreprises locales via le dispositif Windustry, auprès des donneurs d'ordres, en France et en Europe, notamment à l'occasion de Salons internationaux

Co-organisation et co-animation d'événements d'ampleur nationale ou interrégionale sur l'éolien

- Journée FEE/Eole Industrie à la CCI de Région à Lille et Journée technique exploitation maintenance à la Pépinière EnR
- Rencontres Windustry France
- Conventions internationales EMR SEANERGY au Havre, Cherbourg, à Dunkerque
- Journée d'affaires éolien offshore avec 15 donneurs d'ordres internationaux et 50 entreprises régionales à la CCI à Dunkerque
- Journée entreprises CUD/Dunkerque Promotion de sensibilisation aux EMR au Pavillon des Maquettes à Dunkerque (4 avril 2019)

Zoom sur : L'Ecole Centrale de Nantes et la plateforme SEM-REV

L'Ecole Centrale de Nantes fait partie des **principaux acteurs académiques** français spécialisés sur **les Energies Marines Renouvelables (EMR)** et elle compte ainsi un ensemble de formations à tout niveau qui leur sont dédiées et notamment en ingénierie.

SEM-REV est une plateforme océanique gérée par le laboratoire LHEEA et destinée aux projets de R&D. **C'est le 1er site européen d'essais en mer combinant plusieurs technologies,** en lien avec les énergies éoliennes en mer et de la houle, il dispose également d'une connexion au réseau public d'électricité.

Le site d'essai en mer SEM-REV et les bassins d'essai du laboratoire sont une des composantes de l'infrastructure de recherche THOEREM, qui réunit les moyens d'essai de l'Ifremer, Centrale Nantes et L'université Gustave Eiffel sur la thématique EMR.

THeoREM listed on the 2018 national research infrastructure roadmap

Le site accueillant notamment **FLOATGEN**, **la première éolienne offshore de France** (en production depuis septembre 2018), est localisé dans une zone réservée d'1 km² au large du Croisic en Région Pays de la Loire. FLOATGEN est raccordée au réseau moyenne tension d'Enedis. Une base de recherche terrestre héberge également chercheurs et ingénieurs.

Les activités menées sur le site autour des tests de technologies sont notamment :

- l'accueil et la conduite de **projets de recherche nationaux et Européens**, notamment pour l'amélioration des performances et de la fiabilité
- l'acquisition de données d'environnement (Météo-Océano, Physique et biologiques, etc.)
- l'exploitation et la maintenance de l'infrastructure
- l'étude de l'impact environnemental des EMR concernées (sur la faune, les transports sédimentaires...).
- · la sécurité et la surveillance de l'espace maritime.

Les crédits photographiques

Les crédits ci-dessous correspondent aux photos fournies par les constructeurs pour l'Observatoire*

Page	19	Boris de Wolf / Enercon
Page	25	LM Wind Power
Page	28	Unsplash / Nathan McBride
Page	29	Siemens Gamesa
Page	40	TotalEnergies
Page	45	GE Renewable Energy
Page	50	LM Wind Power
Page	51	La Dépêche du Midi
Page	52	Binmeij.jp
Page	57	Envision
Page	79	Poma Leitwind
Page	108	Vestas
Page	110	Nordex
Page	111	Nordex

^{*} Les autres photos sont les photos correspondants aux sources citées dans la page ou sont des photos libres de droits

Les membres de France Énergie Éolienne

SOCOTEC FOUIPEMENT COVERWIND SOLUTIONS FRANCE BENTAM EOL-C ENEL GREEN POWER FRANCE ERG FRANCE SUPATR VISION CETIM TOTAL RENEWABLES IFP ENERGIES NOUVELLES 3E EUROCAPE NEW ENERGY FRANCE WPD OFFSHORE ELEC-ENR SASU POLE MER MEDITERRANEE NASS & WIND SMART SERVICES POMA I FITWIND ENVISION ENERGY ORSTED WIND POWER A/S ABO WIND ARKOLIA ENERGIES SAS C.V.A. S.P.A. ELATOS BILLAS AVENTR ENERGIE LOUIS DREYFUS ARMATEUR SPARKSIS - INVESTER TECHNOLOGIES ATRELE - AUDDICE ENVIRONEMENT CALYCE DEVELOPPEMENT DNV FRANCE SARI ADI-NA (AGENCE DE DEVELOPPEMENT ET D'INNOVATION NOUVELLE-AQUITA-INE) E6 SA BCS ASSURANCES ALPTO ECOPOWER FRANCE SAS GRID SOLUTIONS SAS ENERGIE PARTAGEE LYCEE DHUODA TERRE ET LAC CONSEIL KELLER FONDATION SPECIALES ZEPHYR BMEOL SARL GREENCOAT RENEWABLES SEM SIP ENR EIFFAGE ENERGIE MAINE BRETAGNE

GREENEAGLE SOLUTIONS S.L. BEWEXPERT ENERGREEN PRODUCTION

RWE RENOUVELABLES FRANCE SAS VELOC-TEL DEVELOPPEMENT

WHITE AND CASE LLP SAINT-LAURENT ENERGIE MASER ENGINEERING CEPS BDO IDE CMI TECH5I PASTOR ELEMENTS SAS ALEXIS ASSURANCES SALAMANDER GROUP - SKE FRANCE RGREEN INVEST P&T TECHNOLOGIE SAS BPI FRANCE FINANCEMENT ETCHART DELHOM ACOUSTIQUE NEOTEK SAS BMH AVOCATS EUROWATT DEVELOPPEMENT EURO-WATT SERVICES VALECO SAS DAVID ENERGIES SNC HYDRONEXT VERSPIEREN GLOBAL MARKETS GP-JOULE FRANCE SARL ELICIO FRANCE SOCIETE GENERALE ESCOFI ENERGIES NOUVELLES ALLIANZ CAPITAL PARTNERS GMBH DLGA VOLTALIA SHELL FRTE (TERRA ENERGIES) AT-LANTIQUE MARITIME SERVICES MD WIND NTR WIND MANAGEMENT DAC AFRTSSEN KRANEN BY QUAESTUM METEOLIEN TSPS KALLIOPE NORDEX FRANCE WINDFAN CONSULTING BNP PARIBAS SA

EOS WIND FRANCE SIRMET

SKYWORK

VATTENEALL FOLIEN SAS

POLE S2E2 WINDVISION FRANCE SAS SOCIETE D'EOLIENNE CARIBEENNE 3D ENERGIES WKN FRANCE ACOFI GESTION FCO DELTA 2.0 LOCOGEN SAS GIF QUALITY ENTREPRISES IDEOL VESTAS FRANCE FNCIS WIND WATSON FARIEY & WILLIAMS LIP ENGIE GREEN FRANCE SEAWAY 7 FRANCE INTERVENT SAS RIOTOPE VALOREM ENERGIE ENERGIETEAM GIDE LOYRETTE NOUEL AARPI SUEZ RV FRANCE FILHET-ALLARD ET COMPAGNIE GDES WIND SAS VOLTA AVOCATS TEKERIA NORIA FONDFOLF CEGELEC RENEWABLE ENERGIES CREDIT AGRICOLE LEASING ET FACTORING SCP LACOURTE RAQUIN TATAR OREMOTOR CHARTER GC HK LEGAL SNC VS ENERGIE MAZARS SAS EMERGYA WIND TECHNOLOGIES B.V. CGN EUROPE ENERGY VERDI SARL DU MONT FAVERGER JIGRID FVFRO7F SEML COTE D'OR ENERGIES EOLEC MILIN ENERGY SAS DERBI SITE A WATTS DEVELOPPEMENT INNERGEX FRANCE SAS AXPO SOLUTIONS AG

LABORELEC SCRL VULCAIN SAB ENERGIES RENOUVELABLES SAS TECHNOSTROBE INC. WEB ENERGIE DU VENT MIROVA VSB ENERGIES NOUVELLES NORTON ROSE FULBRIGHT LLP STEAG NEW ENERGIES GMBH OPALE ENERGIES NATURELLES ECOLE CENTRALE NANTES ABELENERGY FRANCE PLANETA FRANCE SAS SERGIES CAISSE DES DEPOTS ET CONSIGNATIONS EDCTI TNE TERRA VIAJES SA FOI TECH RESEAU JADE UL INTERNATIONAL GMBH OATR NOTUS ENERGIE FRANCE SERVICES TENERRDIS VENDER ENERGIE NRG SYSTEMS HELIOPALES FALCK ENERGIES RENOUVELABLES FOLE CONSTRUCTING VSB ENERGIES NOUVELLES SINGULAIR ENERCON GMBH MW ENERGIES NAVAL ENERGIES SYNERIA SAS BLUEFLOAT ENERGY INTERNATIONAL ENERTRAG VENTIS SOLVEO ENERGIE IMAGIN'ERE EOOS ENERGIE LUXEMBOURG SARL BKW ENERGIE AG TENSAR INTERNATIONAL NATURGY RENOVABLES - (ANCIENNEMENT SAFIER INGENIERII NATURGY RENOVABLES - (ANCIENNEMENT SAMSOLAR/SAMFI DEUTSCHE WINDTECHNIK S.A.R.I. NEOEN RP GLOBAL FRANCE

OSTWIND INTERNATIONAL GOTHAER

BAYWA R.F AG 1P ENERGIE ENVIRONNEMENT ABIES TOTAL ENERGIES CUBICO SUSTAINABLE INVESTMENTS IBERDROLA RENOVABLES FRANCE GRAS SAVOYE ENERCOOP SCIC - SA GOWLING WLG FRANCE OUENEA'CH RENEWEX BPCE ENERGECO PRINCIPLE POWER FRANCE EOLFI ENERYO SABIK OFFSHORE LES VENTS MEUSES DU SUD SIEMENS GAMESA RENEWABLE ENERGY FRANCE SAS RES GROUP NOUVERGIES SOFTVA ENERGIE EQUINOR (ANCIENNEMENT STATOIL) ESG ENERGY SERVICE GROUP AMUNDI TRANSITION ENERGETIQUE FLAWAN ENERGY FRANCE SAS SOLEIL DU MIDI VOLKSWIND FRANCE SAS BUREAU VERITAS CONSTRUCTION NORMANDIE ENERGIES SE LEVAGE CABINET RAVETTO ASSOCIES GAIA ENERGY SYSTEMS ENVINERGY TRANSACTIONS SERCOWIND AGREGIO SENS OF LIFE NATURAL POWER FIDAL BIODIV-WIND SAS METROL SCHNEIDER ELECTRIC FRANCE TOTAL FLEX SAFIER INGENIERIE LEOSPHERE ENERGIE EOLIENNE FRANCE OMNES CAPITAL CREDIT INDUSTRIEL ET COMMERCIAL WINDSTROM FRANCE METEORAGE

CONNECTED WIND SERVICES VRYHOF ANCHORS B.V. RBA DEKRA INDUSTRIAL SAS VEOLIA DECONSTRUCTION FRANCE EDPR FRANCE HOLDING WPD ONSHORE FRANCE CEZ FRANCE SAS LYCEE SAINT FRANÇOIS D'ASSISE ROMO WIND VENSOI ATR KDE ENERGY FRANCE VENT D'EST STATKRAFT MARKETS GMBH REGION OCCITANTE EXUS FRANCE SAS CREDIT AGRICOLE CIB NET WIND OX2 WIND AM'EOLE GMBH ASHURST LLP PWC SOCIÉTÉ D'AVOCATS VENTS DU NORD PARKWIND COLLECTE LOCALISATION SATELLITES POWFFND SAS GE ENERGY SERVICES FRANCE GREENSOI VER ENRW FRANCE DLA PIPER FRANCE LLP RAZEL-BEC DS AVOCATS EOLISE SAS BIRD & BIRD AARPI SK & PARTNER ENESI SARL BORALEX SAS TRIODOS FINANCE BV

Partenaires : Pôle Mer Méditerranée CCI Business France Energies Marines Office franco-allemand pour la transition énergétique (OFATE) Cluster maritime francais

ITA ENERGIES LPA - CGR AVOCATS

ARKEA BANOUE F&T

164

L'équipe de l'Observatoire 2021

Matthieu MONNIER

Adjoint au Délégué général

Rachel RUAMPS

 Chargée de mission Economie et Industrie

Vanessa ANDER

Cheffe de projet Industrie éolienne

Cécile MAISONNEUVE-CADO

• Présidente de la Commission Industrie

Capgemini invent

Alexandra BONANNI

Chef de l'Energy Strategy Lab

Marianne BOUST

Directrice – Energy & Utilities

Ganesh PEDURAND

Consultant Senior – Energy & Utilities

Erwan MASSÉ-GUILLAUME

Consultant Junior – Energy & Utilities

• Pré-presse et Impression ENCRE NOUS

www.encre-nous.com

Observatoire de l'éolien 2021

